
VoLUME 57, NUMBEa 15 PHYSICAL REVIEW LETTERS 13 OcmsER. 1986

Coherent Vortices and Subharmonic Interactions
in the Two-Dimensional Wavier-Stokes Equations

H. T. Moon' )

Department of Astrophysical, Planetary, and Atmospheric Sciences, University

ofColorado, Boulder, Colorado 80309
(Received I2 May 1986)

2D Navier-Stokes solutions are generated for a periodic shear layer with a fundamental (m =0)
and a single subharmonic (m &0) disturbance. For m=2, 3, and 4 we find clusters with m+1
vortices without the formation of vortex pairs. This implies enhanced spreading in a spatially grow-

ing mixing layer. Ho~ever, when rn 5 we find a different dynamical clustering due to nondirect

energy transfer from the fundamental to the subharmonic. Additionally, if we force the layer with

a wavelength smaller than the fundamental we find a new mechanism called "collective interac-

tion.

PACS numbers: 47.90.+a, 47.20.—k, 47.25.6k

In this Letter I present a numerical study of the
subharmonic interactions displayed by coherent vorti-
cal structures in a two-dimensional shear layer gov-
erned by the Navier-Stokes equations. I believe that
this work is related to current studies of turbulence,
such as strong coupling between initial instability and
subsequent flow development, '2 as well as to the rela-
tionship between highly coherent nonlinear excitations
and states which exhibit deterministic turbulence. 3 4

The basic shear flow to be studied is a parallel flow
which has a broken-line velocity profile as shown in
Fig. 1(a). The shear region, when undisturbed, is

along the x axis. Linear theory5 reveals that this flow
is unstable to a sinusoidal disturbance of small ampli-
tude. Figure 1(b) gives the linear growth rate as a
function of wave number. The fastest-growing mode
is called the fundamental and is found to be ko= 0.4/d,
where d is one half of the shear thickness. The initial
flow is in the form of the basic flow plus a small-
amplitude sinusoidal perturbation. I represent the
middle line of the shear layer (i.e. , the x axis when un-
disturbed) by evenly distributing dyed fluid particles
along the line. The distribution of dyed particles for
the initially perturbed shear flow that we consider is
expressed as

S(xy (=0)=„' f, k(x —x„)k(y —doslfl(kox„) —d sin(k x„+4 ))dxdy,
n 1

k =ko/(1+m), m=1, 2, 3, 4, . . . ,

(la)

(lb)

where k represents the mth subharmoruc6 of the fun-
darnental ko, A arid Ap ar'e their small amplitudes,
and (t and )Vp denote a phase difference and a total
number of particles, respectively. The evolution of
the perturbed shear flow is determined by the time-
dependent incompressible 2D Navier-Stokes equa-
tions, which are written as

dto/dt+ B(to, (tt)/B(x, y) = v'vr'to,

)7 Ill = tk), (2b)

where to is the vorticity, Q is the stream function, and
v is the kinematic viscosity. The streamwise and
cross-stream velocities are given by u = B$/By,
t)= —B@/Bx, respectively. We look for numerical
solutions to Eqs. (2) using a pseudospectral approxi-
mation7 based on a N„x X„Fourier-series representa-
tion of the flow field in the spatial domain,
0 ~ x ~ (1+m )A, o, and —1.36k.o ~ y ~ 1.36)i.o. )V„ is
varied from 64 to 128 depending on the situation, and
l))t» is fixed at 64. The time differencing has been han-
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FIG. l. (a) Basic shear flow and sketch of the test parti-
cles along the shear region. (b) Linear growth rate Oy, vs k,

ko =0.4/d.
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FIG. 2. (a) Streak lines at the rollup state, t = 1. 40k. 0/ U. o

(1) Corresponding stream function. (c) Streak lines at
t = 3.3A.o/ U().

died by the leapfrog scheme as a predictor step fol-
lowed by a trapezoidal corrector step. The flow is
periodic in x, and we require that the stream function
P(xy, t) satisfy P = Uoy+ const at y = 1.36)to and
Q= —Uoy+const at y= —1.36k.o, as well as t12y/
Qx2=0 at y = +1.36k.ti. I have chosen A.a=2.36 cm,
Uo=2. 52 cm/sec, d=0. 15 cm, and the kinematic
viscosity v = 0.01 cm2/sec. The initial Reynolds
number, based on these, becomes NR, = Uo d/t
= 37.80, which corresponds to the experimental
value. ' The velocity of a dyed particle within a unit
cell is calculated by area-weighted linear interpolation
from the values at the neighboring grid points. A total
of as many as 3840 particles is used to show their posi-
tions and it is emphasized that they do not enter into
the calculation at all. 9 The phase difference @ is set
equal to 0, which value endows the dynamical system
with special symmetry properties. The initial velocity
distribution becomes, as a consequence of Eq. (1), odd
under the operations x —x, y —y; i.e., u(x,y)
= —u( —x, —y), t (xy) = —t ( —x, —y). This sym-
metry also implies that Q (x,y) =P ( —x, —y) and
cu(xy) =ru(xy). This property is preserved in time
because of the invariance of Eqs. (2) under the same
operations. The symmetry property is constantly
checked for the integrity of the current numerical
simulations.

We first discuss the case when the basic flow is per-
turbed only by the fundamental. The subharmonic
amplitude a in Eq. (1) is set equal to zero and the
amplitude of the fundamental Ao is given the value
0.06, which corresponds to an energy content of 1.0%
of the mean flow energy. Figure 2 gives the evolution
of the perturbed shear layer. The streak lines of Fig.

2(a) show the beginning of a rollup state at r = 1.04)to/
Uo. Figure 2(b) gives the corresponding stream func-
tion, illustrating that the streak-line lumps are con-
fined in regions enclosed by the closed contour lines of
the stream function known as Kelvin's cat's eyes. The
dyed fluid is seen to be trapped in the eyes and rolls
around them constantly creating new interfaces. Fig-
ure 2(c) displays the sharp spiral structures developed
later at t=3.3A.O/Uo. This observation is consistent
with the theoretical prediction of Jimenez. to The
creation of the sharp structures, however, needs the
following explanation. The viscous dissipation is
higher at the rollup state than at any other time be-
cause of the nonlinear excitation of higher harmonics
of the fundamental. Because of the dissipation, the or-
bit of a fluid particle around an eye is not closed but
rather is a shrinking spiral. The rollup state then re-
laxes while the system is subject to a viscous dissipa-
tion and is followed by a state of smaller discrete
lumps but with finer spiral patterns in them, as shown
in Fig. 2(c).

With a substantial amount of energy dissipated
away, the system moves to a lower-energy state by ac-
tivating a longer-wavelength mode. A great deal of
experimental work has been devoted to the control of
energy transfer to a particular mode, which changes
the interaction pattern of discrete vortices downstream
and therefore changes the growth of the layer. Recent
experimental investigations'2 indicate that interac-
tions between discrete vortices are not necessarily lim-
ited to pairings, but also involve three or more vor-
tices. To investigate this within the deterministic
models, the amplitude of the subharmonic A is now
assigned a value 0.026 (0.5% of the mean flow energy)
and 20=0.06. When m is 1, i.e. , when the system is
further perturbed by the first subharmonic, a pair-
ing of two neighboring vortices results at around
r —1.0X /Uo, which case has been extensively stud-
ied." When m is raised to 2 or 3, a vortex tripling or
quadrupling is realized again at around r —1.0A, /Uo
as shown in Figs. 3(a) and 3(b). A qualitatively simi-
lar behavior has been observed for m =4 also, and Fig.
3(c) shows a cluster of five vortices at r = 1.26&4/ Uti.
To study the energetics of the simultaneous merging
of multiple vortices, the cross-streamwise averaged,
one-dimensional energy-dissipation spectrum' D (k)
is calculated. Figure 3(d) gives D(k) for m=4 at
three different instants which are to=1.2A.QUo, rt
=3.8A.o/Uo, and t 26.3A. /UoOIt is noted that the
rollup state of discrete vortices similar to the one
shown in Fig. 2(a) is formed at re=1.2)to/Uo. As ex-
plained earlier, the rollup state is experiencing a high
viscous dissipation for a while. Then, at tt = 3.8h, o/ Uo,
it is observed that the line horizontally joining the vor-
tices is only slightly tilted vertically, indicating the ini-
tial growth of the subharmonic (not shown here).
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FIG. 4. (a) D ( k) for m = 5 at tp = 1.05K p/ Up, ti = 5.2h. p/

Up, and t2 = 6.74K.p/ Up. (b) Corresponding vortex interac-
tions in real space.

FIG. 3. Vortex clustering: (a) m=2, t=3.7l/ipUp, (b)
m=3, t= 5. 22K. p/Up, (c) m=4, t=6.3X /pU,p(d) Dissipa-
tion spectra D(k) for m = 4 at tp = 1.2, ri = 3.8,
t =26.3h. /pU pDp denotes D(kp, tp)

Even at this instant, the dissipation spectrum of Fig.
3(d) points out that the fourth subharmonic is about
to be the dominant mode. Figure 3(d) further indi-
cates that this subharmonic is yet to grow, as the ener-
gy of the fundamental is selectively transferred to the
fourth subharmonic, bypassing the instability modes in
between. The selective growth of the fourth subhar-
monic results in the simultaneous merging of five vor-
tices in the real space. The five vortices are almost
vertically aligned [Fig. 3(c)l when the subharmonic
reaches its peak at t2=6.3&0/Up, which is nearly five
times the rollup time of ro = 1.2A.O/ Up.

As the subharmonic is separated farther apart from
the fundamental by the raising of m, the intermediate
instability modes lying between the fundamental and
the forced subharmonic are observed to become im-
portant. The dissipation spectrum of Fig. 4(a) shows
that the forced subharmonic is overpowered by the in-
termediate modes in the course of the evolution at
ti=5.2&o/Up and t2=6.74)ip/Up. Figure 4(b) gives
the interaction of vortices at the corresponding mo-
ments in real space. Instead of the simultaneous
merging of six vortices, a local pairing of two vortices
is first seen at ti Later, at t2, .the unpaired vortex rolls
around the paired one to merge. This in a sense re-
sembles an unforced shear layer. ' As in Eq. (la) has
been raised from 0.026 to 0.6, but the resulting situa-
tion is still observed to be the same. A qualitatively
similar behavior is observed for m greater than 5 if the
natural vortices generated from the fundamental are
involved. The participation of many instability modes
in the dynamics now certainly creates more complicat-
ed flow motions.
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FIG. 5. A ne~ mechanism, "collective interaction, "
A f= P p/ 1 .4. Each cluster shows a collective interaction of
six small vortices. The arrows indicate the far-stretched
(mlgrating) vortices in each cluster, where iwo such vortices
are enclosing the others merging at the center.

A different dynamical clustering does take place
when the vortices involved are physically smaller than
the natural vortices. Figure 5 illustrates how this type
of clustering occurs. The distance between the vor-
tices shown in Fig. 5(a) is Xf=0.71)~.p. These smaller
vortices are generated from the instability mode of
kf=1.4kp. When this state is further forced by its
fifth subharmonic, i.e., by the mode of kf/6, six such
vortices coalesce at once, as shown in Figs. 5(b) and
5(c). Note that the streamwise spatial domain of Fig.
5 corresponds to the wave number b, k = kf/12, which
is big enough to have two large merged structures.
The main feature of this interaction lies in the two
characteristically different regions; one is a vortex-
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merging region at the center of the cluster and the oth-
er is a region where two individual vortices are far
stretched, enclosing the central merging region. These
stretched vortices are indicated by arrows in Fig. 5(c),
and they separate clusters from each other. A larger
number of vortices, from seven to ten, for example,
are also tested, and it is found that they too can be
made to interact all together to form a cluster like the
one shown Fig. 5(c), as long as the vortices involved
are made physically smaller. In all these cases, only
two vortices are extremely stretched to encircle the
central area where the merging of the rest of the vor-
tices takes place. This kind of vortex merging was also
observed in the laboratory experiments'2 and was re-
ferred to as a "collective interaction. "' Investigation
of the dissipation spectrum suggests that the smallness
of the vortices involved makes the energy transfer
easier from the forced mode to its particular subhar-
monic.

In summary, it is shown that the selective growth of
a subharmonic involves a corresponding simultaneous
merging of multiple vortices in real space. A control
of this merging pattern bears on a significant practical
implication because of the associated dramatic increase
of the spreading rate. The direct energy transfer from
the fundamental to a particular subharmonic is shown
to be possible with the weak forcing of the subharmon-
ic, as long as the subharmonic is not too far apart from
the fundamental. When far apart, which may presum-
ably depend on the initial noise level, the intermediate
instability modes may grow faster, resulting in a local
merging of small number of vortices which rather re-
sembles an unforced shear layer. Since the interaction
of vortices is largely determined by the long-
wavelength subharmonic instability, the motion is ba-
sically inviscid. A collective interaction found in the
laboratory is also shown to be a property of the two-
dimensional Navier-Stokes equations. As a prereq-
uisite for this new interaction, the vortices need to be

smaller than the natural vortices. The actual physical
size of the vortex may also seem to depend on the
number of vortices involved in the interaction.
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