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Scalar-Wave Localization in a Two-Component Composite
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Scalar-wave localization characteristics in a two-component composite are calculated as a function
of frequency, relative volume fraction, and impedance contrast between the components. It is

found that the occurrence of localization requires a minimum impedance contrast ~hose value is

defined by a critical point on the localization phase diagram. Furthermore, localization is shown to
be closely tied to resonant scattering, and there is a multitude of mobility edges and localization re-

gions associated with resonance harmonics.

PACS numbers: 42.20.—y, 03.40.Kf, 43.20.+g, 62.65.+k

As a wave phenomenon in disordered systems, An-
derson localization is recognized to be common to
both quantum particles and classical waves, i.e., elastic
and electromagnetic waves. While up to now most of
the works on localization have focused on electronic
systems, recently there is an increasing interest in the
study of classical-wave localization, ' '2 since the classi-
cal waves offer both the potential for more direct ob-
servation of localization as well as the possibility of
novel localization characteristics distinct from those of
electrons. As a first step towards the clarification of
classical-wave-localization behavior in three-dimen-
sional random systems, in this work we use the
mathematical framework developed by Vollhardt and
Wolfle' to calculate the scalar-wave-localization
phase diagram for a two-component composite. Our
results indicate that the occurrence of mobility edge
requires the impedance contrast between the com-
ponents composing the medium to exceed a certain
minimum value, and the point at which localization
first appears represents an isolated critical point on the
localization phase diagram (the variables Being fre-
quency, impedance contrast, and relative volume frac-
tion). Furthermore, we found the localization to be
closely tied to resonant scattering, and there could be a
multitude of mobility edges, localization regions, and
critical points associated with resonance harmonics.

Consider a composite consisting of two components
with indices of refraction tli arid Tl2 () 1li). Im-
pedence contrast of the medium is defined to be
m= n2/ni ( ) 1). We will limit our consideration to
cases where ni and n2 are real, i.e., the wave is locally
propagating in nature. Volume fraction of component
1 is denoted by 1 —p and that of component 2 by p. At
p 0 or p 1, our composite microstructure will be
assumed to consist of spheres of the minority com-
ponent, with diameter d, randomly dispersed in the
matrix of the majority component. In the intermediate
range we will assume the microstructure to be that
resulting from a symmetric randomization of the two
components.

The scalar-wave amphtude u satisfies the wave equa-

[I/c'(r) ] (t)'u/8 r') —r7'u = 0,

where the wave speed c takes the value of ci in com-
ponent 1 and the value of c2= ci/m ( ( ci) in com-
ponent 2. Since u is assumed to satisfy Eq. (1) for all
spatial points r, it is straightforward to show that the
amplitude u and its normal derivative must be continu-
ous across an interface. In a random medium, wave
propagation can have different characters when viewed
on different length scales. At scales less than the
mean free path of scattering, I, the propagation is basi-
cally wavelike. However, at scales much larger than l
the numerous scatterings make the energy transfer dif-
fusionlike with a diffusion constant Do= cl/3, where c
is the effective wave speed of the medium. Provided
that c is known, Do for a wave of frequency co can be
calculated from the transport theory as

D0 = — [ d8 sin8 (cos8 —1)o (8) ]
24m. 5N "0

(2)
where

~(8) = (I/4~') [(1—p) If)(&) I'+ p If2(8) I']; (3)

N= [(n/6)d3] ' is the number of scatterers per unit
volume, fi &2&(8) is the scattering amplitude of a plane
wave of frequency co propagating in a medium of speed
c impinging on a sphere of component 1 (2) and dian-
eter d, and 8 is the scattering angle defined relative to
the incident direction. The scattering amplitude

fi t2i(8) can be readily obtained from the solution of a
simple boundary-value problem. '5

To calculate c, we start with a microgeometry ap-
propriate to p=0 or p=1: spherical scatterers well
dispersed in a matrix medium. Let us suppose for the
moment that the matrix is component 1 and the
scatterers component 2 (suitable for p =0). The
Green's function of the wave equation (1) in the
frequency-momentum variables (ao, k) is given by

(4)
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where the self-energy X=Xg+iXi is directly related
to the forward-scattering amplitude f(0) calculated
from the scattering of a plane wave in medium 1 by a
sphere of component 2:

X= —24pd 3f(0). (S)

In Eq. (5) the factor p is present to account for the
volume fraction of scatterers. From Eq. (4) it is clear
that the medium speed ci should be renormalized to a
new value

c, ' =Re[c ' —(X/~')]'I'

{Im[ci 2 —(X/cu ) ]' 2 represents effective attenuation
due to scattering loss). Our numerical evaluation of ci
has shown that at low frequencies ~here the
wavelength is much larger than the scale of the inho-
mogeneities, ci is almost identical to the effective
medium value c, calculated from the condition of van-
ishing average forward-scattering amplitude (for a
wave traveling in a medium composed of two symme-
trically randomized components). This agreement
with c, persists to practically all values of p. If we ex-
change the roles of component 1 and component 2, a
renormalized c2 can be similarly defined, and at low
frequencies c2

——c, = ci for all values of p. As fre-
quency increases, ci and c2 deviate from c, and the
validity of ci i2i becomes limited to composition re-
gions of p = 0 and p = 1 where a matrix phase is well
defined and the application of perturbation theory is
justifiable. '6 To interpolate between these two compo-
sitional limits, we observe that for a high-frequency
pulse whose width is && d and which can therefore
resolve its immediate environment as either com-
ponent 1 or component 2, the effective pulse speed is
given by the geometric-optics value [(1—p)/ci+p/
c2] . By replacing ci and c2 in this expression by ci
and c2, we obtain an interpolation formula

1/c = (1 —p)/ci+ p/c2 (6)
for c, which tends to the correct frequency limits as
well as the correct compositional limits. This value of
c will be used in the calculation of the diffusion con-
stant Do, Eq. (2), and fi i2&(8).

Localization of the wave occurs when the effective
diffusion constant approaches zero. According to the
sealing theory of localization, '~ the way this happens is
as follows. Near the mobility edge, properties of the
wave field are homogeneous only on a scale greater
than a correlation length g ) I At scales less than (,
diffusion constant varies monotonically from Do at the
scale of the mean free path I to Dol/g at the scale of $.
(This is analogous to diffusion on a fractal structure
which has a lower length scale I and an upper length
scale' (.) Far away from the mobility edge (= I, and
the effective diffusion constant is given by Do. How-
ever, as one approaches the mobility edge ( diverges,
and the effective diffusion constant vanishes as a

consequence. Vollhardt and Wolfe' have identified
mathematically the class of maximally crossed dia-
grams as the dominant multiple-scattering contribution
to the renormalization of the diffusion constant near
the mobility edge. The resulting correction to Do is
given by '3

D(ru) = Do(a)) —= Do(co) 1—I 3y(o)) c q(~),
'7T Qj

(7)
where q(cu) = K/i(cu) is a cutoff wave vector, K is a
constant, and y= —24d3 Im[(1 —p) fi(0) +pf2(0)] is
related to the total scattering cross section. We ob-
serve that q is bounded by a maximum value q,„
=2~/d, since d is the minimum scale length of the
medium. That means if there is a minimum value of I
given by i~;„, then the maximum value of K is given
by K,„=2m I;„/d Since I;„—d, we have K,„
=2m In th.e following calculation we will use q =2~/
l(co) as the cutoff wave vector. While the use of a
particular value of K will not alter any qualitative
features of our result, the quantitative implications of
picking K,„will be noted and contrasted with those
of using a smaller K. In this context it should be men-
tioned that the diffusion constants calculated by use of
K =1 and 27r, for parameters appropriate to Genack's
optical-transmission experiment using polystyrene
spheres, " are both in reasonable accord with the mea-
sured value(s). For this particular case the value of K
does not have a significant influence on the calculated
diffusion constant, which is on the order of
(1.1-1.5) x 106 em2/sec for p varying from 0.4 to 0.6,
m = 1.59, d =0.5-0.8 JM, m, and wavelength in
air = S896 A. .

In Fig. 1 the mobility-edge contours calculated from
the condition D(co) =0 are plotted as a function of p
and cud/ci. Each contour, which represents a single
value of the impedance contrast m, separates the local-
ized region inside the contour from the delocalized re-
gion outside. As seen in the figure, for impedance
contrast of up to m =3 there are three large regions of
localization centered roughly at cud/ci ——1.7, 2.9, and
4. As a function of increasing m, localization first ap-
pears in the middle region in the form of an isolated
critical point with m=2. 11, p=0.35, and cud/ci
=3.1. The use of K,„ in the calculation means
m = 2.11 is the minimum impedance contrast required
for scalar-wave localization in our present model. As
the middle region grows in size, the region centered at
cud/ci =4 starts to nucleate from a second critical
point at m =2.12, p=0.44, and a&d/ci ——4.15. This
is followed by the nucleation and growth of the
cod/et =1.7 region when m increases beyond 2.25.
We have also examined the case of letting K= l. It
was found that the location and order of appearance of
the localization regions still remain the same, except
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FIG. 1. Mobility-edge contours projected on the p-cod/c~

plane. The order of appearance of the three regions as m is

increased is noted by I, II, III, and IV. In each region the
smaller contours always appear before the larger ones. In I,
the first six contours correspond to m=2. 107, 2.11, 2.12,
2.14, 2.22, and 2.3. The seventh one, m=2. 50, extends
over to region II. In II the first four contours correspond to
m = 2.12, 2.14, 2.22, and 2.3. In III the t~o contours corre-
spond to m = 2.3 and 2.5. In IV the narro~ strip of localized

region corresponds to m=2. 5. The value of K used in the
calculation is 2m.
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FIG. 2. Correlation length and localization length plotted
as a function of the frequency variable cud/c~. E denotes ex-
tended region. The curves in extended regions represent the
correlation length g. L denotes localized region. The curves
in localized regions represent the localization length ~.
values of mand pare given in the figure.

now the minimum impedance contrast is raised to
m ——2.48.

Examination of the scattering cross sections in the
three regions of localization shows that they are direct-
ly related to the i = 1, 2, 3 resonances of the
component-2 spheres, where i denotes the angular de-
generacy of the resonant mode [angular variation of
the resonant mode is given by Pi(cos8), where Pis the
Legendre polynomial]. The localized region centered
at cud/et =2.9 is predominantly associated with the
i =2 resonant scattering. The reason why this region
appears first has to do with the fact that there is an op-
timal frequency range, centered about rod/ct = 2.5, for
the occurrence of localization. If the frequency is too
low, scattering is weak and therefore y(co) is small.
On the other hand, at high frequencies the decrease of
wavelength inevitably limits the growth of ( and there-
by also inhibits localization. This leaves the inter-
mediate-frequency range, which has a wavelength in
the fast medium (component 1 in our case) 1.5-3
times that of d, the most susceptible to localization. In
this frequency range localization firs occurs when the
enhancement of the scattering cross section by a par-
ticular resonance is just enough to bring D(cu) to zero
(i = 2 resonance in our case). As the impedance con-
trast becomes larger, the resonance enhancement in-
creases„and this broadens the localization region. It
should be noted that resonances affect not only the
scattering cross section but also the effective speed c,
making its value an oscillating function of frequency.
Also, we have found that the scattering of a wave in a
fast medium by a scatterer of the slower component is

much stronger than if the medium and the scatterer
components were switched around. In our case, this
accounts for the nonsymmetric shapes of the localiza-
tion regions about p=0.5, since for p & 0.5 we have
predominantly component-2 scatterers.

In localized regimes, the localization length X is the
counterpart to the length ( in extended regimes. An
extension of the Vollhardt and Wolfle theory' gives
the following equation for h. :

3
3y(a)) c

7T Qj

k
k +A.

dk. (8)

In Fig. 2 the localization length as calculated from Eq.
(8), and the correlation length as calculated from Eq.
(7), are plotted versus cod/ct. The values of pand m

are given in the figure. Three points about Fig. 2

should be noted. First, at low frequencies we have
(= i, so the increase in ( reflects the increase of the
mean free path i Also, the .undulation seen in the
low-frequency region is the manifestation of a scatter-
er resonance. Second, the divergences of g and X at
the mobility edges are verified to have the form
(cu —cu') ', where cu' denotes the location of a mobili-
ty edge. Third, due to the uncertainty in the value of
K, the values of g and A. should only be viewed as an
order-of-magnitude estimate. A smaller K would shift
the mobility edges and increase the minimum values
of A. (in fact, by requiring A. & d we can limit the max-
imum value of K to & n/2); however, the qualitative
behavior ~ould still remain the same. An interesting
question is whether the divergence exponent for g
would remain I at the isolated critical point where the



VoLUME 57, NUMB' 15 PHYSICAL REVIEW LETTERS 13 OcToaER 1986

localization region shrinks down to a point. By calcu-
lating the coordinate of the isolated critical point
(cu'",p"', m") to a high degree of accuracy, we have
determined that g —(co —Oi"") 2, i.e., the exponent at
the isolated critical point is twice that of the usual criti-
cal exponent.

In conclusion, our calculation indicates that localiza-
tion of the scalar wave should occur in a two-

component composite when the impedance contrast
exceeds a certain minimum value that is in the range
of 2.1-2.5. Moreover, the optimal parameter range
for the observation of localization is found to be

p —0.35-0.45 and cud/c, —2-3. Based on the empiri-
cal observation that the scalar wave reproduces much
of the classical-wave phenomena despite the vector
character of the classical waves, we expect our results
to be qualitatively generalizable to elastic and elec-
tromagnetic waves. However, a full quantitative ac-
count of the classical-wave localization remains a chal-
lenge to be addressed by further theoretical and exper-
imental studies.
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