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Three-Dimensional Analysis of Coherent Amplification and Self-Amplified
Spontaneous Emission in Free-Electron Lasers
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The growth and saturation of spontaneous emission and coherent radiation in a long undulator
are studied by use of the 3D Maxwell-Klimontovich equation. Electron correlation, transverse ra-
diation profiles, spectral features, transverse coherence, and intensity characteristics are discussed.
The results, which agree with recent micro~ave experiments, are applied to proposed schemes for
generation of short-wavelength coherent radiation.

PACS numbers: 42.55.Tb, 41.70.+ t, 42.10.Mg, 42.60.Jf

Coherent radiation entering a periodic magnetic
structure (an undulator) along with a beam of elec-
trons is amplified by a process which may be called
coherent amplification (CA) which is the basis of the
free-electron laser (FEL).' lt is then natural to expect
the undulator radiation, the spontaneous emission due
to periodic motion of discrete electrons, to be modi-
fied by the CA process and, under certain circum-
stances, to lead to a radiation with different charac-
teristics which may be called self-amplified spontane-
ous emission (SASE).2 Qualitative arguments have
shown that SASE from long undulators and high-
density electron beams could be quite intense, provid-
ing a potential source of broadly tunable, coherent ra-
diation at wavelengths below 1000 A.3 In this Letter a
self-consistent, 3D analysis of SASE is presented. 4 At
the same time, the problem of finding in three dimen-
sions an explicit expression for the amplified radiation
in terms of the initial amplitude is solved.

It is convenient to choose z, the distance from the
undulator entrance, as the independent variable. The
transverse coordinates are given by a two-dimensional
vector x. The dynamical variables describing the elec-
tron motion are the phase 8 and the relative energy de-
viation g. Here 8 is roughly the electron coordinates
with respect to beam center in units of Xi/2~, where
ii. i is the radiation wavelength. These variables satisfy
the well-known pendulum equations. 5

To properly analyze SASE, it is important to account
for the discreteness of the electrons. This is achieved
by utilization of the Klimontovich distribution func-
tion F(8,q, x;z) given by6

2~(nz, )-' X,S(8-8,)S(~—~,)S(x-x,).
Here, n is the line density of electrons and 8, , . . . , are
the instantaneous coordinates of the ith electron. All
electrons are assumed to move parallel to the z axis;
the effect of electron wiggle is taken into account in
the pendulum equations and the generalization to in-
clude a beam divergence is discussed later. F is a sum
of two parts, fand hF. Here the background distribu-

tion f is obtained from F by a two-step averaging pro-
cess, an ensemble average to remove particle fluctua-
tions and an average over 8 to remove the wave-
length-scale density modulation arising from the in-

teraction with radiation. The electron beam is as-

sumed to be long, so that end effects can be neglected,
and the density is assumed to be uniform in 8. b, F
contains only high-frequency parts responsible for ra-

diation and can be regarded as small compared with f.
Its Fourier transform is

h(v, g, x;z) = (2m) 'l2
I d8 et"ehF(8, q, x;z).

The radiation field is represented by a complex am-
plitude a(t, x;z), which is the slowly varying part of
the full amplitude. v is the normalized frequency, co/

tot, where cot is the resonance frequency given by
2ck„yg(1+ K /2). Here yo is the average beam ener-
gy in units of mc2 (I= electron mass, c = velocity of
light), k„=2m/X„, A. „ is the undulator period length,
and K is the magnetic deflection parameter. 5 The
wavelength and wave number corresponding to the
frequency coi are denoted by Xi and ki, respectively.
The amplitude will have peaks at fundamental fre-
quency (v= 1) and at odd harmonics. Thus it is a
good approximation to assume that t is close to an odd
integer, which in the following is taken to be 2i+1,
i=0, 1, . . . . Maxwell's equation, assuming slowly
varying amplitude and phase, becomes

8—ihv k„+ a= —Ki dq h.
p ki t)x

Here hv is the frequency shift v —2i —1,
= eKtn/4yoeocki, eo is the vacuum dielectric constant,
and K, = ( —1)'K[1,($,}—J, , (g,)], g, = (2l+1)K2/
4(1+ K2/2), where the J's are Bessel functions. 5

The continuity equation for the Klimontovich distri-
bution function can be separated into two parts, one
describing the high-frequency interaction of it and a,
and one describing the slow, nonlinear evolution of f,
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(4)

as follows:

(Q/Qz —2k„g ) h+ (e,/2yzmc2) $, K,a Bf/By=0, (2)

'df//dz+ (e/2y02rncL~) Xi Ki „dv (ash'/Bq+ a' rlh/Bq) = 0. (3)

In Eq. (3), Li, is the length of the electron beam, the
asterisks indicate complex conjugates, and the angular less quantity2 p = (ne2Ki2/32a-„y03k2nic2eo)'i3, which
brackets represent the ensemble average. The func- is typically of order 10 3 for the cases considered here.
tion f varies slowly in z and, for the purpose of Eq. When pN, where N is the number of the undulator
(2), is replaced by the initial distribution f(q, x;z periods, is much smaller than unity, the solution can
= 0) = V(q) U(x)/a „, where o.„=f U(x) d x is the be expanded in a perturbation series, reproducing the
cross-sectional area of the electron beam. The func- known formula for both undulator radiation and also
tions are normalized by f dv) V(q) =1 and U(0) =1. the small-signal FEL gain. The solution for the more

Equations (1) and (2) are linear coupled equations general case is obtained by Van Kampen's methods, 7

and can be solved by a suitable method. An important which is an eigenfunction expansion applicable to
parameter characterizing the solution is the dimension- non-Hermitian operators. In the high-gain limit, the

resulting expression for the radiation amplitude is

—2ivk pg f d y A (y) [a (v, y;0) —iK f dv) h (v, y, ri;0)/ T(p„"Il) ]

f d2y A'(y) [1+U(y) dZ(p, )/dp, ]

where K =~i/2k„p, T(p„,g) = p. +vg/p, Z(p ) = p
x f d~ V'(q)/T(p„~), V'(q) = dV(q)/dq, and A

and p, are, respectively, the eigenfunction and eigen-
value of

where

A= —i [2k„ppz+2kgv, v]z+ (k/2) x'(z') dz'].

p, + —a. + U(x)Z(p, ) A(x)=0,8
2p Bx

(5)

dz e" V'(v)) u(x, x')A (x),

where a. = 1/2pkik„v. Equation (5) is essentially that
derived and studied earlier by Moore, 8 except that the
effects of momentum spread are included. In one
dimension it becomes the dispersion relation studied
by several authors. 9 There are, in general, a discrete
set of complex eigenvalues, as well as a continuum of
real ones. However, the behavior in the high-gain lim-
it is governed by eigenvalue p, with the largest positive
imaginary part. In Eq. (4), the term containing
h(. . . ;0) describes SASE. The term containing the
input amplitude a(. . . ;0) describes CA and repre-
sents the solution of the initial-value problems in three
dimensions.

To take into account the trajectory excursion due to
the electrons' angular spread, it is necessary to consid-
er the properties of electron beam propagation in un-
dulators. Let x(z) and x'(z) describe the electron tra-
jectory in the absence of FEL interaction with initial
conditions x(0) = x and x'(0) = x'. For constant
focusing, x(z) = x cos(k~z) + (x'/k~) sin(k~z) and
x'(z) = —xk~sin(k~z)+x'cos(k~z), where k& is a
constant characterizing the focusing strength known as
the betatron wave number. Assume that the phase-
space distribution of electrons, u (x,x'), is indepen-
dent of z, i.e., u(x(z), x'(z)) = u(xx'). The eigen-
value equation in this case is similar to Eq. (5) with
the last term replaced by

po rD—2lkgp 4'g 6( x

Although the new eigenvalue equation has not been
studied in detail yet, the basic results in this Letter are
probably not affected by this generalization.

The transverse behavior in Eq. (4) is completely
specified by the mode function A (x). Thus, the radi-
ation in high-gain FEL s is guided, as discussed recent-
ly in the literature. s'0 In addition, it follows from the
explicit form of the solution that the radiation is fully
coherent transversely. Here, it is assumed that the
eigenvalues of Eq. (5) are not degenerate, so that a
single mode dominates in the high-gain regime well
before saturation. Under certain circumstances, the
eigenvalues could become degenerate, s and the
transverse coherence properties are more complicated.
The full transverse coherence is somewhat surprising
for SASE and should be compared with the properties
of the usual undulator radiation, which is, in general,
partially coherent transversely, the degree of coher-
ence being determined by the ratio of radiation to
electron-beam phase-space areas. " It also follows
from the solution that the CA power is maximum
when a (v, x;0)~ A'(x). This means in particular that
the curvature of the input phase front is of the same
magnitude as but opposite sign to that of the output.

The power is proportional to the ensemble average
of ~a~2. The interference between the SASE and CA
amplitudes clearly vanishes, and the ensemble average
of the SASE term can readily be performed on the as-
sumption that electrons are not correlated initially.
The intensity growth and the spectral characteristics
are mainly determined by the imaginary part p, I of p, .
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o~ = (9p/2n'J3N)' (8)

For momentum spread much larger than p, the eigen-
value p, is real and there is no exponential growth.
The total SASE power, obtained by integration over
the frequency, is

PSASE p Pbesm gse /Nic (9)

where Pb„ is the kinetic power in the beam (equal
to Eol/e, where I = beam current) and N„
= nh. i(2m) ' 2/o. z is the number of electrons in one
coherence length.

From AF one obtains information on electron distri-
bution and correlation. For CA the single-particle dis-
tribution function develops a coherent modulation.
For SASE the modulation occurs in the two-particle
correlation function. The correlation, defined as the
excess probability of finding two particles compared
with the uncorrelated case, is modulated with the
periodicity of the radiation wavelength and extends to
a distance of one coherence length.

The slow variation of f with respect to z is deter-
mined by substitution of the solution of the linear
equations into Eq. (3)—a procedure known as the
quasilinear approximation in plasma physics. '2 From
the resulting nonlinear Fokker-Planck equation, one
finds that the average value of q must decrease so as
to conserve the total energy of the radiation-beam sys-
tem. In addition, the rms spread ~„ofq is found to
increase as o.

~ =p2g, e'/Ni, . Since the growth rate be-

Recall that p, is the solution of the eigenvalue equation
(5), and is a function of bi . For the one-dimensional
case with zero momentum spread, the maximum value
of p, l is ( —', ) '~2 at b, i =0. More generally, let the max-

imum p, l of p, l occur at Ai =bi . The growth is
then maximum at a frequency given by cot (21+ I
+b,v~). In general b, v is found to be negative. The
behavior of the p, l about Ai determines the spectral
shape. In this way, one obtains the power spectrum,

dP, dP p Ep
=e'S(Aalu/cu ) g„+gs

deal

dQJ 0

where r=8mpPpN, bcu=oi —co~, S(x) =exp( —x/
2o z~), and gz and gs are quantities of order unity. The
first term in Eq. (7) gives the power spectrum for CA,
and one finds the growth of the input power spectrum
(dP/dc')0 to be exponential. The power spectrum for
SASE is given by the second term, which exhibits the
same exponential growth, with the input replaced by
the effective noise power spectrum pE0/2rr, where Eo
is the average beam energy. The function S describes
the frequency dependence of the gain for CA, as well
as the spectral shape of the SASE radiation. In one
dimension, for zero momentum spread, one obtains
gz =gs= —,

' and the bandwidth
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FIG. 1. Schematic representation of SASE characteristics.

comes negligible when o „&)p, the exponential
growth will stop when the factor gse' becomes about
N„.'3 The power at saturation becomes, in view of Eq.
(9), about pPb„. For parameters considered here,
the saturation occurs at N = 1/p. In view of Eq. (8),
the bandwidth at saturation is cu/b, ru —N, which is the
same as the bandwidth of the spontaneous radiation
from an undulator with the same N

Figure 1 summarizes the characteristics of SASE at
different undulator periods N. For pN &( 1, the radi-

ation is an incoherent superposition of radiation from
individual electrons, and is referred to as the undulator
radiation. It is partially coherent transversely as a
result of finite electron-beam emittances. The band-
width is about 1/N. For larger N but with pN ( 1, the
FEL interaction causes modulation in the correlation
function of electrons, resulting in an enhanced radia-
tion intensity and coherence. Barring certain degen-
erate situations, the radiation amplitude is dominated
by a single mode which is exponentially growing and
fully coherent transversely. The relative bandwidth in
this exponentially growing regime is smaller than the
undulator radiation by a factor (pN)' 2. Finally, the
exponential growth stops when pN —1 as a result of
the increased momentum spread induced by the FEL
interaction.

Experimentally, SASE was measured in the mi-
crowave region at Lawrence Livermore National Lab-
oratory. ' For this experiment, the radiation is con-
fined in a waveguide, and therefore 1D theory is ap-
propriate. The data were compared with the prediction
given by Eq. (9) in the first paper of Ref. 4. The
agreement is encouraging.

A long undulator in a special bypass of an optimized
storage ring is a promising SASE source for broadly
tunable high-power radiation at short wavelengths. 3 In
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0
a recent design of such a system for 400-A radiation, p
is about 10 3 for a 750-MeV, 200-A electron beam. 's

About 100 MW of transversely coherent power, with a
bandwidth of about 10,will emerge from an undula-
tor of about 1000 periods.

A more detailed account of this work will be
presented elsehwere.
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