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%e present a simple set of rules for constructing ultraviolet-finite closed-fermionic-string
models. In particular, the method easily gives four-dimensional models which possess %= 1 super-
symmetry, chiral fermions, and phenomenologically interesting gauge groups.

PACS numbers: 11.17.+y, 12.10.6q

Superstring models are promising candidates for
unified theories, in particular providing an ultraviolet-
finite quantum gravity. To date, however, thc
phenomenologically interesting models2 have been
constructed in ten-dimensional space-time, leaving the
difficult dynamical problem of compactiflcation of the
extra dimensions to be settled before any meaningful
comparisons with low-energy physics can be made. It
is clearly desirable to construct four-dimensional string
models directly. For most low-energy physics, such a
four-dimensional string model reduces to an effec-
tive-gauge-field theory with (super)gravity. Since each
model has only two parameters, e.g. , Newton's con-
stant and a gauge coupling (which may be dynamically
fixed), and properties of gauge theories are relatively
well understood, confrontation with experiments is
direct and in principle straightforward. In this Letter,
we present rules for constructing consistent
closed-fermionic-string theories in four dimensions.
These rules are simple enough that they may be readi-
ly used even by readers not well versed in string
theory. A priori, the size of the gauge groups obtained,
typically rank 22, is big enough to permit left-right
symmetry, horizontal symmetries, hypercolor compo-
siteness, andlor hidden sectors.

The only compactifications which are presently well
understood at the string level are flat toroidal ones, for
example that used in constructing the heterotic string. 2

The possibilities for such constructions are limited by
the requirements of unitarity and space-time Lorentz
invariance. In particular, invariance under discrete re-
parametrizations of the world sheet (modular transfor-
mations) is a key ingredient in the ultraviolet finite-
ness of string theories and provides a stringent con-
straint on string-model building. In addition to these
requirements one must demand that the theory give a
sensible projection onto the subspace of physical states
with proper space-time spin statistics.

In a previous work we developed a formalism based
on a generalization of the projection of Gliozzi,
Scherk, and Olive4 for systematically constructing
ten-dimensional closed —fermionic-string models which
satisfy the above requirements. Strictly speaking we
imposed modular invariance only at the one-loop lev-
el; the work of Seiberg and Witten and others sug-

gest, however, that this, together with the proper pro-
jection of physical states with correct statistics which
we demand, is sufficient to ensure multiloop modular
invariance. Hence we believe that the method de-
scribed here generates the complete set of ultraviolet-
finite closed-fermionic-string models. 6

Here we present the results of a straightforward gen-
eralization of the methods described in Ref. 3 to in-
clude twisted boundary conditions for complex fer-
mionic fields on the world sheet and to allow any even
space-time dimension up to ten, in particular four. As
in Ref. 3 we use fermionic fields on the string world
sheet to represent the internal-symmetry degrees of
freedom of the string and the Neveu-Schwarz-Ramond
formalism7 for the space-time fermions. Our main
concern is to ensure the modular invariance of the
one-loop path integral (which is just the partition func-
tion) obtained from integrating out the fermionic de-
grees of freedom (viewing the string as a two-dimen-
sional field theory on a world sheet with toroidal topol-
ogy). The contribution to the partition function de-
pends on the boundary conditions chosen for the fer-
mionic fields around the two noncontractible loops of
the world-sheet torus. In general, to achieve a modu-
lar invariant result we must sum over contributions
with several different choices of boundary conditions
since modular transformations can map one set of
boundary conditions into another.

The rules we give here allow for twisted boundary
conditions. In a complex diagonal basis for the fer-
mionic fields the boundary conditions around the cr

loop of the torus, for example, can be specified by a
single vector W with rational numbers as components
(O» Wt& I),

+t(t, a +2vr) =exp(2mi+")+'(t, o ),
where I labels the complex fermionic fields for internal
and space-time degrees of freedom, both left- and
right-moving modes. Similarly some other vector Vf'
labels the sct of boundary conditions in the t direction.
The fields Wt are generalizations of Neveu-Schwarz-
Ramond fermions and have been analyzed by Vafa. 8

For simple boundary conditions (periodic or anti-
periodic), complex fermion fields can be decomposed
into real fields. The "single-fermion" cases are of in-
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terest because they permit the reduction of the total
rank of the gauge group3 as well as the construction of
models in both even and odd space-time dimensions.
Details of the general analysis will be discussed in

Kawai, Lewellen, and Tye, 9 which also contains a dis-

cussion of string interactions and other related topics.
For a fixed set of cr boundary conditions a sum over

contributions to the partition function with different t

boundary conditions naturally forms a projection onto
a subspace of string states. 3 5 In addition to requiring

!
that the sum over contributions from different bound-

ary conditions give a modular invariant partition func-
tion we demand that the projection produced be sensi-
ble, i.e., have eigenvalues 0 and 1 (so that a string
state is either included in the partition function or is
not), and include physical states with the correct
space-time statistics, i.e. , space-time bosons should
contribute to the one-loop amplitude with a positive
overall sign, while space-time fermions should contri-
bute with an additional minus sign. The general solu-
tion for the partition function (from the fermionic de-
grees of freedom) satisfying these conditions is9

Z„;,„=( [m) ' X exp{2mi[x(P+5; )(Xk, —W; W+k, +S)
Io;,P;)

+ S ——,']}Tr exp{2~i[ H"' — H"g' —X&(P~+5„)W, N ) },
with the constraints (ij not summed),

(2)

kit + kp = W, W (mod 1),

mjk(~=0 (mod 1),

k„+ k, + S, ——,
'

W; W; = 0 (mod 1) .

(3)

(4)

(5)

mions and q+n 8"—1 for fermions. For each com-
plex fermion field, H ii also includes a vacuum ener-

Et= —,
' [(n H")2 —n Wt+ —,

' ].
Here the structure constants ktj are rational numbers.
The vectors specifying the boundary conditions rep-
resented in the sum form a vector space spanned by
basis vectors W, . The boundary conditions in the o.

and t directions are given by nW and PW, respective-

ly, where nW=g, n, W, The co.efficients n, and J8;
take integer values from 0 to m, —1, where m, is the
smallest integer such that all of the components of
m, W, (l not summed) are integers. The set of W,
must be independent, i.e., nW=O implies that all

n, =0. The sum in (2) runs over all values of all the n
and P coefficients. The overbar signifies that we in-

clude only the fractional part of each component of the
vector nW, i.e. , while n Wt can be greater than 1 we al-

ways have O~n 8"& 1. The dot product involving

W, in (2) -(5) is defined to be W, WJ = ate( l) 8'/WJ,
where ~(l) is 1 for l labeling left-moving fermionic
fields and —I for I labeling right-moving fermionic
fields. This structure arises because the contribution
of a right-moving fermionic field to the partition func-
tion is obtained from the contribution of a left-moving
fermionic field by complex conjugation. The vector
Wo has all components equal to —,

' and must be present
in the vector space to ensure a proper projection. 3 nS
= gn, S, =0 or —,

' (depending on the space-time com-

ponents of nW) represents a space-time fermion (Ra-
mond sector) or boson (Neveu-Schwarz sector),
respectively. For heterotic strings, S, =— H,o.

The 7 appearing in (2) is the complex modular
parameter of the world-sheet torus. H"ii (H"f') is
the Hamiltonian operator for the left-moving (right-
moving) fermions with a. boundary conditions speci-
fied by nW. It consists of a sum over oscillator modes
with quanta q —n W, q a positive integer, for antifer-

The components of N a are the fermion number
operators (number of fermions minus number of anti-
fermions) for each of the complex fermion fields, and
as before, the dot product with W; includes an addi-
tional factor of —1 for the right-moving modes.

The phase in front of the trace in (2) is constructed,
together with the constraints (3)-(5), so that Z is in-
variant under modular transformations of 7.. The sum
over the p coefficients forms a projection operator, as
desired, with only those states contributing to Z which
satisfy

=S,. —Wi ~ nW+ X kijnq+ko; .(modl). (7)

The physical states allowed by this constraint contri-
bute to the partition function Z with an overall phase
exp{2mi[nS ——,

' ] }, giving the correct physical space-
time statistics, regardless of the particulars of the
internal symmetry.

Equations (3) through (7) provide a set of rules for
constructing the spectra of consistent closed-fermi-
onic-string models, without further reference to Eq.
(2) and the details of string theories which it repre-
sents. First one must choose a set of basis vectors W,
of the appropriate form for the space-time dimension
and type of string model (type II or heterotic) desired
(examples will follow). The components of these vec-
tors and the constants k& must be chosen consistent
with (3)—(5). Each specific choice defines an accept-
able model. Then the spectrum-generating formula
(7) provides a set of equations for the allowed fermion
numbers in a given physical sector characterized by
o. 8'. The physical particle content of the model is gen-
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m2(left n n) = X I (q —n W')n'+(q+n 8"—1)n~iL+ $ E' [(—D —2)/24]+ g qM~,
l(left), q l(i.ft)

L

and similarly for m~(right, n, n). Here we have

Including Wi = ((0) I( —,
' )'6) as a basis vector adds

one more constraint from (7) which serves to elim-
inate the tachyons from the spectrum and adds another
massless physical sector which produces 496 fermions
in the adjoint representation of SO(32) to give the
SO(32) heterotic string model. 2 The ground state of
the periodic components ( Wi =0, /=0 to 3)
transforms as an SO(8) spinor to give the space-time
spinors [fermion number 0 or 1 signifies which of the
two SO(8) spinor representations and hence left or
right space-time chirality]. Adding W2 = ((0) I-

( —,')8(0)8) to the basis breaks the SO(32) group to
SO(16) S SO(16). If ki2 is taken to be —,

' then there
are no massless particles from the physical sectors
given by Wo+W2 or Wo+Wi+W2 [with ground level
( ——,', 0)l and the gauge group is in fact SO(16)
S SO(16).'0 " If ki2 = 0 then these two sectors

give (with fermion number 0 or 1) gauge bosons in
the (128, 1) and (1, 128) representation of SO(16)
S SO(16) which taken together with the (1, 120) and
(120, 1) from the Wo sector give the gauge group
E8 E8.2 In general, different choices of Wi and ki~
can give the same physical model„ for example, the
basis Wo and W2 gives the Es S SO(16) tachyonic
model3'0 for any allowed choice of kii, as does the
basis Wo, W2, and W3=((0) I(2 )6(o)~(2)2(0) ).

In constructing four-dimensional models six bosonic
and six real fermionic space-time degrees of freedom
of the ten-dimensional string become internal. To ap-
ply our formalism the six internal bosonic degrees of
freedom are fermionized. For the left-moving sector,
they simply increase the number of complex fermions
from 16 to 22. For the right-moving sector, each of
the six internal boson fields plus its fermionic super-
partner becomes an SO(3) triplet of real fermions.
Together they have an [SO(3)]68 S6 (permutation)
symmetry. It is straightforward to check that this fer-
mionization gives the super-Virasoro algebra with the
correct central charge. Writing the six triplets as three
triplets of complex fermions, the general form of the
%I is9

W, = (S,(ai bi c, ) (a2b2c, ) (a3b3C3) I di . d22),

~i+ bi+ ci Si (mod 1). (10)

(9)

The sum in (8) runs over / labeling left-moving fer-
mion fields, nq' and nz are fermion and antifermion oc-
cupation numbers for the individual excitation modes
in the aW sector, and D is the space-time dimension
[the (D —2) term is the contribution of the string
coordinates in light-cone gauge to the vacuum energy].
M~ is the excitation number for the integral quanta q
of the string coordinates. The units in (8) are 8n
times the string tension; for low-energy particle con-
tent only the massless sector is relevant, others being
of the order of the Planck mass.

We will sketch the use of this formalism by way of a
few simple examples. Consider first the ten-dimen-
sional heterotic-type theory. There are four right-
moving complex fermionic fields and sixteen left-
moving ones [these numbers chosen to cancel the
(super)conformal anomaly]. The four right movers all

have the same boundary conditions. This is required
for local world-sheet supersymmetry of the covariant
theory, needed in turn to decouple the timelike fer-
mionic modes. Since these represent space-time de-
grees of freedom we have 5&

= WI= 0 or —,
' for /=0 to

3 (type-II theories have this structure for the left
movers as well). In an obvious notation (the bar
separating right and left movers) we have Wo
= ((—, ) I( —, )' ). If we choose this as the only basis
vector, then the 16 complex left-moving fields are
equivalent to 32 real ones with a natural SO(32) sym-
metry group. The model has two sectors, Wo and the
zero vector 0. For the Wo sector, the ground-state en-
ergy level is given by (8) to be ( ——,', —1) for (right,
left) movers and (7) gives —,

'
gi/xiii, = —,

' (mod 1) for

either allowed value of koii=0, —,'. For W'= —,', the
lowest excitation raises the level by —, unit. Choosing
any one of the left-moving sector ni or ni = 1 satisfies
(8). The 32 choices yield tachyonic states (m = ——,

' )
transforming as an SO(32) vector. To get massless bo-
sons, we excite a right-moving mode with quantum —, ,
yielding a space-time vector index, and in the left-
moving sector require gi(icfi) n{ + ni 2. This gives
the 496 gauge bosons in the adjoint representation.
Taking Mi=1 gives the gravity multiplet. The zero
vector 0 sector (i.e., n=0) has ground-state level
(0, 1) and hence produces only massive fermions.
This is the SO(32) tachyonic model. 5'0

Here S, = 0 or —,
' is the only space-time component and

the constraint on the triplet structure for the right
movers is again a consequence of the local world-sheet

crated by consideration of all allowed sets of n& .The left- or right-moving quanta in the first-quantized theory are
added to the appropriate vacuum energy to build up the (mass)2 of a physical particle excitation subject to the con-
straint that the (mass) calculated in the left- and right-moving sectors of the theory are identical. Explicitly, for
each sector aW, m2= m2(left, n, n) = m2(right, n, n), where



VOLUME 57, NUMBER 15 PHYSICAL REVIEW' LETTERS 13 OCTOBER 1986

supersymmetry of the covariant two-dimensional
theory.

As before we always have the vector Wo
=((—,')' (( —,') ). The vacuum energy level of the
(right, left) movers is ( ——,', —1). Taken by itself this

gives a tachyonic model with gauge group [SO(3)]
S SO(44) and no massless fermions. The SO(44)

symmetry arises naturally from the left movers; the
[SO(3)] gauge bosons are obtained by taking Mi =1
for the left movers (to get a space-time vector) and
exciting the right-moving internal degrees of freedom.
Adding Wi=(0(0 —,

'
—,') I( —,') ) removes the tachyons

and adds a sector of massless fermions, in fact giving
an N=4 supersymmetric SO(44) model. '2 All that
remains of the [SO(3)]6 symmetry are the six vector
bosons in the N = 4 supergravity multiplet. In general,
nonsupersymmetric models are obtained if Wi is ex-
cluded. We can reduce the supersymmetry and/or
break the gauge group by adding more basis vectors.
Including, for example, W2= (0(0—,

'
2 ) ( 2 o 2

)'I-
( —,

' )t4(0)s), we can choose k& so that we obtain an
N = 2 supersymmetric SO(28) S SO(16) model. Ad-

dition of

to this set produces, for some choices of k&, an N =1
supersymmetric model with the gauge group SO(14)
S SO(14) S SO(6) S SO(10). In addition to gaugi-

nos in adjoint representations and fermions in vector
representations of the gauge group [from the Wi sec-
tor, e.g. , (14,14,1,1,) (14,1,6,1), (1,14,1,10), etc.],
one can check in this case that the physical sector
given by W2 [with ground level (0,0)] yields two chiral
fields in the (4,16) and (4,16) representations of
SO(6) 8 SO(10). If SO(6) is taken as a horizontal
symmetry group, this model has sixteen chiral families
in $0(10). We note that a scalar supermultiplet always
accompanies the N = 1 supergravity multiplet.

The group structure in four dimensions obtainable
from our rules is very rich. For example, choosing Wo
and W, from above and

W, = (0(0-,' —,
' ) (-,' o-,' )'I (0)"(-,' )'),

W, = (0(-,' —,
' 0)'(0-,' —,

' ) I(-,' )'(0)'(-,' )'(-,' )'),

we can obtain an N = 1 supersymmetric model
with the gauge group E7 S SU(2) S U(8) S SO(4)
S SO(B). Also, N= 1 models can be obtained from

type-II strings. The gauge group obtained from our
method can be precisely identified. If we keep track of
the U(1) charges from each complex fermionic field
(~ ll"——,

' +N' a for the Ith charge in the aW sector),
each massless vector boson corresponds to a root vec-
tor in Cartan's construction of a Lie group. It can be
shown that the gauge bosons arising in our construc-
tion always transform as the adjoint representation of a
simply laced Lie group. 9

Finally we note that it will be interesting to clarify
the close connection of this work with the idea of
strings on orbifolds. '3
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