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Renormalization Flow in Lattice QED
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Ati investigation of pure U(1) gauge theory is made based on block-spin transformations for con-
figurations of lattice size 16' down to size 84 and 4~. Even operators (five types in the first three
representations) and ten renormalized couplings are determined on these smaller lattices. This al-

lows the mapping of the renorrnalization fio~. An interesting fixed-point structure and results on
the leading critical exponent are found.

PACS numbers: 11.15.Ha, 02.50.+s, 64.60.Ak

An understanding of the critical structure of com-
pact QED has remained one of the challenges of lattice
gauge theory. Although the pure U(l) gauge theory
may be implemented on a computer in a straightfor-
ward way, the results have been controversial in many
aspects.

The one-parameter action of Wilson' with the single
plaquette term leads to a two-phase structure with a

phase transition (PT) near P = 1, classified originally
as second-order type, z which is expected from rigorous
results. 3 Further Monte Carlo studies in a two-
parameter space for the action

S=Pgt, TrUp+y$p TrUp~,

where Up denotes the usual product of U(1) link fields
around the plaquette, showed the existence of a com-
plex critical structure with a line of PT's crossing the
Wilson axis (y =0).4 At sufficiently large y a meta-
stability signal with a substantial action gap at the tran-
sition was observed and a high-statistics study re-
vealed a two-state signal for y~ 0 and suggested that
the type of the PT might change from first to second
order below the Wilson axis near y = —0.11(5).5

Such a tricritical point (TCP) would be of utmost in-
terest: It would indicate the existence of a second
relevant parameter. This might open the way for a
nontrivial continuum limit of scalar QED (cf. Hausen-
fratz6). Gupta et al. applied Monte Carlo renor-
malization-group (MCRG) techniquess in order to
determine the leading critical exponent of the PT.
Along the Wilson axis they find a crossoverlike in-
crease of t when approaching the PT from the hot
side; they do not divide into hot and cold histories,
and obtain a value for t of = 0.42.

A serious defect in the usual MCRG approach is the
uncertainty about the RG flow —whether one really
moves towards the fixed point (FP) and where it is si-
tuated. The possibility of following the flow in
coupling-constant space has been suggested, '0" and
Swendsen's method has been successfully used in spin
models' and in field theory. ' The method may be
readily generalized to gauge theories and recently has
been applied to U(1) gauge theory by Burkitt. '3

Here I present results obtianed in a high-statistics
study of pure U(1) gauge theory for lattice size 164 at
various values of y and P close to the corresponding
PT's (cf. Table I). I also study Villain's heat-kernel ac-
tion'4'5 near the critical point.

On the 164 lattice a clear two-state signal at the PT
was observed for all values of y (cf. Table I), even for
y= —0.2 and for the Villain action (cf. Grosch et
al. '6). Monopoles play a crucial role in the U(1) tran-
sition. 7'5'7'8 Monopole loops closed as a result of
the periodicity of the boundary conditions may be in

part responsible for the metastability signal, at least for

y «0. At P = 1.0105, y=0, I observed no tunneling
for at least 70000 MC iterations, neither from the hot
nor from the cold branch; the tunneling frequency
rises for negative y by a factor of 5-10. I consider it
important to perform a simulation in a definite phase,
and discarded results obtained in runs where tunneling
on 164 occurred.

A block-spin transformation (BST) with a scale fac-
tor of 2 has been introduced. The link on the
smaller-size lattice is V„„/~ V„„I, where V„„ is con-
structed from the sum over paths of lengths 2 and 4
connecting the corresponding sites of distance 2 on the
larger lattice:

Vx,,= U, ,~x+t, t

+ $ U„„U„+„„U„~„+„„U„'+z„„.(2)
+y

vt„p,

This BST leaves the necessary properties of gauge in-
variance intact. BST's to size 84 and 44 have been per-
formed and fifteen operators have been measured on
these smaller-size lattices. They may be written as real
parts of products of link fields along the boundary of
geometric objects, i.e.„

S~, single plaquette,

S2, double plaquette,

S3, bent double plaquette,

Sq, twisted bent double plaquette,

S5, planar 2X2 loop,
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(S)
0.6197(3)
0.6696(1)
0.5367 (1)
0.6206 (7)
0.6212 (4)
0.6228 (5)
0.6534(4)
0.6673 (4)
0.6910(1)
0.6582 (22)
0.6692 (45)
0.6771(21)
0.6986(8)

—0.3122(10)
—0.3060(18)
-0.2916(12)

RG flo~ type

8.11(5)
2.92 (4)
1.10(50)
7.94(5)
7.34(15)
6.97(11)
4.57 (5)
2.13(21)
2.30(56)
5.27 (3)
6.75 (5)
6.35 (5)
3.72 (5)
6.06(4)
6.49(2)
3.87(6)

1

2
3

5

6
7
8
9

10
11
12
13
14
15
16

0.912 0.15
0.912 0.15
0.970 0
1.010 0
1.0103 0
1.0105 0
1.0105 0
1.020 0
1.050 0
1.1185 -0.15
1.121 -0.15
1.158 —0.20
1.160 —0.20

Pv= 0 643
Pv =0.644
Pv=0 645

0.55 (10)
0.87 (9)'
0.35 (12)
0.61 (10)'
0.88(20)
0.41(11)
0.57 (5)
0.80(6)
0.99(5)'
0.50(24)'
0.52(16)
0.54(9)
0.68 (13)
0.54(4)
0.64(9)
0.55 (17)"

TABLE I. Values of the couplings (P =P&, y =P6) on 16 near or at the critical point,
the average plaquette action (S), the type of RG flow observed, and the leading relevant
and irrelevant eigenvalues of the linearized BST. %here the ~;„come out complex I give
the absolute size and indicate the entry by an asterisk. Entries 13-15 are results for the
Villain action.

Entry P ~max

for representation of charge one, and S6-Sio and
Sit-Sis correspondingly for charge two and three; the
representation for charge n amounts to taking the real
part of the nth power of the variables. These opera-
tors are possible contributions to the general form of
the action

S=XiP,~, , S,=X.S,.
where S,„are contributions to interaction type i from
site x.

Furthermore I determine the values of couplings
Pi-Pio (corresponding to Si-Sio) on the 8 and 4 lat-
tices according to a generalization of Swendsen's
method. '0 As discussed elsewhere in more detail'2'3
this amounts to a comparison of the measured expec-
tation values (S,) with the conditional expectation
values (S,'). This procedure allows one to determine
the coupling constants of the effective action on 84 and
44 lattices obtained by BST's from 164.

The resulting flow structure in the 10-parameter
subspace of even couplings turns out to map the RG
flow remarkably consistently. A first step in this direc-
tion has been done independently already in Ref. 13,
albeit with consideration of only P (Pi) and y (P6),
fewer start points on 16~ (only y = 0), and less statis-
tics.

As for the details of the MC simulation I refer to
Lang. '9 Typically several thousand updates from cold
or hot starts have been discarded before starting to
perform BST's and subsequent measurements. Five
iterations separated consecutive BST's; bunches of
several hundred such measurements were used to ob-
tain a new and improved estimate of P;. Several such
bunches finally led to convergent values of P;. The to-

tal number of 164 iterations for each value (P, y)
varies between 20000 and 90000. The statistics gath-
ered and the time spent at various values of the
parameters (P, y) on the 164 lattice varies. About half
of the computer time has been spent on the Wilson
line (y =0). More runs at further (P, y) values con-
firmed the general scenario, but will not be presented
here because of comparatively smaller statistics.

Let me start the discussion of the BST results with
an important, I think, observation. Figure 1(a) exhi-
bits the expectation values of operators S2 and Si as
obtained after one or two BST's on 84 or 44 lattices,
respectively. One observes a remarkable coincidence
of the results that actually come, as discussed above,
from various start values of the 16 couplings; the
values on the 164 lattices are in most cases away from
the curve in Fig. 1(a). All results are consistent with a
common functional relation between S2 and Si. Simi-
lar figures may be drawn for all other operators mea-
sured. This indicates a fast approach to the renormal-
ized trajectory. Note that this trajectory and the posi-
tion of its intersection with the critical surface are
dependent on the particular form of BST chosen.

Thus one finds three regions with three types of
RG-flow structure:

(a) Hot phase. Below the PT's and precisely at the
PT's (on the hot branch) the system flows towards the
trivial FP at P, =O.

(b) Critical points. If one starts on the 164 lattice at
the PT on the cold branch (cf. Table I) one stays criti-
cal and quickly approaches a FP on the critical surface
where one observes a stable set of values for all mea-
sured operators when comparing 84 and 44 results.
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FIG. 1. (a) Expectation values of operator S2 vs Si mea-
sured after one BST on 8" lattices (crosses) and after two
BST's on 44 lattices (squares). The numbers denote the cor-
responding entries in Table I. Note the behavior at the fixed
point [S(84)=S(4~)]. (b) Like (a)„but for the coupling
constants P2 and P6 vs Pi.

13 16 7

(c) Cold phase. Starting on the cold side somewhat
above the PT (e.g. , at P=1.02, y=0) one moves
away from the critical surface towards larger couplings.

The behavior for the operators is confirmed by the
results for the coupling constant determined for the 84

and 44 configurations. In Fig. 1(b) I exhibit the results
for two, as it turned out, important couplings P2 and
P6= y plotted versus Pt =P. As a result of the numer-
ically much more delicate problem of their determina-
tion, the values have a larger numerical uncertainty.
In the cold phase —where there are fewer results —the
coupling constants are only marginally consistent with
a common function form. A possible explanation may
be the existence of redundant operators, e.g. , like
those discussed for gauge theories. ' Still the flow
behavior and the results for the other couplings (not
shown in the figure) follow the pattern of the opera-
tors. The actual numbers will be published else-
where. '

Correlations of operators measured on configura-
tions obtained from each other by BST's allow a deter-
mination of an estimate for the truncated, linearized

FIG. 2. Sketch of the RG-flow structure moved into the
(P =Pi, y =P6) plane for the sake of the discussion.

BST called T.s 9 At a FP of the BST the largest eigen-
values of T" are related to the leading critical ex-
ponents through v = logs/logk, where the scale factor
of the BST is s = 2 in this case. Only even operators
have been considered (those contributing to the con-
tinuum action F2„) and thus only the leading even
eigenvalues may be determined. As was pointed out22

there are various sources of systematical errors when
solving the truncated equation for the truncated T;
however, it turns out that the leading correction terms
to the leading eigenvalue cancel.

Table I gives the leading relevant and irrelevant
eigenvalues. I consider only results for T(2'), i.e.,
from correlations involving measurements after one
(84) and two (44) BST's. I found that one has to in-
clude at least St~ to achive stable eigenvalues which
then change only slightly when including the other
operators S7 i5. The errors give a measure of this
dependence and are certainly underestimated. The
average over the results for flow type (b) is
&,„=4.05 +0.45. At the FP I thus identify a leading
critical exponent v=0.50+0.04, consistent with the
value for a Gaussian theory. Away from the FP [cases
(a) and (c)] the values of 1/v are proportional to the
slope of the P function and may be used to estimate its
shape. '9 A decrease of the leading relevant eigenvalue
when approaching the PT from the hot side has also
been observed in Ref. 7. A crossover behavior
between the domain influenced by the tricritical ex-
ponents and that close to and at the critical point is
typical for a nearby TCP.

I now summarize the results and conclude (cf. Fig.
2).

(1) Throughout the hot phase and even at the PT on
the hot branch the RG flow drives the system towards
the trivial FP. The correlation length is finite in this
domain. The flow quickly approaches a unique trajec-
tory which shows that there is just one relevant param-
eter. The two-state signal observed throughout may
be a finite-size effect associated with periodically
closed monopole loops. ' The hot state at the PT

1830
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would then be an artifact of the MC simulation. As
discussed, tunneling between the two states seldom
occurred which made a distinction between hot and

cold histories natural. Mixing of the results from the
two states may lead to results interpolating between
the values of u obtained for flow types (a) and (b).

(2) Precisely at the PT (sensitive to the fourth digit
of the coupling within the present statistics) on the
cold branch of the two-state signal a FP is observed.
The correlation length (=I/ ais infinite there; all

dimensionless masses am~i, „,vanish. I have found this
behavior for values y ~ 0; from my results alone I
cannot exclude that this behavior cannot be produced
at @=0.15 (the corerelation length may be large but
finite there, indicating a true firs-order transition).

(3) Already slightly above the critical point the RG
flow leads away from the FP following again a unique
trajectory: The points after two BST's are clearly at
larger couplings than those after just one BST. If the
RG flow really approaches a line of FP's (with a mar-

ginal operator), this line has to be outside the range of
P values investigated and does not extend to the criti-
cal surface with its isolated FP (where no marginal
eigenvalue was observed). We know that there is a
massless state (photon) throughout the cold phase. 3 23

However, there may be further states with masses not
equal to zero in the cold phase (i.e., a~0). Such a
feature is compatible with the present results. Investi-
gations including further operators such as, e.g. ,
monopoles7'8 may improve our understanding in this
respect.

(4) I fin no signal of a TCP. Such a point lies on a
tricritical submanifold in the multidimensional critical
surface. One would expect that the RG flow on this
surface behaves differently in its critical and in its tri-
critical part. In particular, there will be two FP's of the
BST: one with one relevant parameter reached from
the critical part of the singular line in the (P, y) plane,
and the other a tricritical FP with two relevant parame-
ters. All observed RG flows approach a common tra-
jectory and there is no indication of fundamentally dif-
ferent behaviors for the studied range of values. A
possible TCP could be situated, however, at y & 0; as
mentioned I did not observe flow type (b) for 7 =0.15.

I consider the results in some respects quite surpris-
ing, but I think that they demonstrate the importance,
feasibility, and usefulness of real-space RG studies for
lattice gauge theories.
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