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Theory of Electron Band Tails and the Urbach Optical-Absorption Edge
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The density of states p(E) in the tail for an electron in a correlated Gaussian random potential in

three dimensions is constructed from first principles by means of a simple physical argument. This
yields a linear exponential dependence of p on E which, for reasonable values of the rms potential
fluctuation and correlation length, spans many decades, and occupies most of the experimentally
observable energy range. This is suggested as the origin of the fundamental Urbach optical-
absorption edge.

PACS numbers: 71.20.+c, 71.50.+t, 7S.50.6e

In 1953, Urbach' proposed an empirical rule for the
optical-absorption coefficient a(to) associated with
electronic transitions from the valence to conduction
band tail in disordered solids. As originally applied to
silver and alkali halides, this rule states that
a(co)~exp[(il'to ttoo)/Eo]—, where hco is the photon
energy and ED and h too are fitting parameters, Eo being
proportional to kT in Urbach's original work. Subse-
quent experimental studiesz 6 on a variety of disor-
dered semiconductors and glasses exhibiting this Ur-
bach exponential spectral behavior which persists in
some cases for up to five decades have strongly sug-
gested that the Urbach absorption edge is a nearly
universal property of disordered solids and that the
underlying physics is both simple and general.

In contrast, theoretical efforts have considered a
variety of fundamentally different physical origins of
the Urbach edge. The simplest of these is in the
electron-band-tail density of states (DOS). For heavi-
ly doped semiconductors with screened Coulomb
impurities, Kane, 7 Bonch-Bruevich, s and others
developed semiclassical treatments for the density of
states which focused primarily on the probability distri-
bution of the potential fluctuations. Taking advantage
of the long-range nature of the impurity potential, it
was shown that for a Gaussian probability distribution
the deep tail forms a Gaussian density of states.
Halperin and Lax9 (H-L) recognized that the underly-
ing physics changed completely for tail states near the
band edge where the kinetic energy of localization
plays a dominant role in determination of the scale of
the most probable potential fluctuation. This leads to
a density of states which scales exponentially with the
square root of energy in three dimensions. These

results have also been verified formally. In d spatial
dimensions, Cardy'0 has shown for a Gaussian white-
noise potential that

p (E) I E l4{5-4)14exp( —const x
I E I' "')

This result remains true in the limit that the de Broglie
wavelength A, =-h/(2m ~E~ )' 2 is long compared to any
finite correlation length L of the disorder. We will

refer to this as the H-L limit. In the opposite limit
of L )) l~. , it has been shown" that p(E)—~E[4exp( —~E~2/2V„, ), recapturing the earlier,
semiclassical results. Despite the firm mathematical
foundation of these results, neither of these energy
dependences can account for the universally observed
Urbach tail. This discrepancy has led to extensive
studies of alternative mechanisms including both
Frenkel'2 and Wannier'3 excitons and their associated
oscillator strengths. '~ Although important in certain
molecular crystals and polar semiconductors, respec-
tively, these effects cannot account for the universal
nature of Urbach edges. For instance, in a-Si in which
the exciton binding energy is small compared to the
width of the band tail, these models are inapplicable'5.
nevertheless, Urbach's rule is accurately obeyed.
Also, transient photoconductivity measurements in
the glassy semiconductor As2Se3 have given direct evi-
dence for linear exponential behavior in the
conduction-electron DOS over fiv decades. 6

The universal nature of Urbach's rule in both optical
absorption and the one-electron DOS suggests a care-
ful reexamination of the one-electron DOS in a ran-
dom potential. '6 's Accordingly, in this Letter we
derive from first principles the density of states in the
tail, obtaining asymptotically exact expressions for the
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~k V(k)B-'(k) V(-k).
(2ir)~

For convenience the autocorrelation function

B(k) = V' (~L')'~'exp(- k'L'/4)

(2a)

is characterized by a correlation length L measuring
the spatial extent of short-range order, typically of the
order of the interatomic spacing. Band-tail states arise
in such a model from potential fluctuations of depth
Vo large compared to the typical fluctuatio V, „and
the corresponding probability of occurrence is ex-
ponentially small. For instance, if we consider a po-
tential fluctuation of the form V(x) = —Vo exp( —x /
a2) the probability of occurrence is determined by

S = ( Vo /2 V, , ) (a/L ) [2 —(L/a )2] (3)

This defines a variational problem9'9 for the class of
Gaussian potentials parametrized by a depth Vo and a
range a. As discussed previously, " the requirement
that such a potential fluctuation contribute to the elec-
tronic density of states at an energy —1E1 places a
constraint on the variational parameters Vo and a. For
1E1» V, , this becomes the requirement that the
potential fluctuation possess a ground state at precisely
an energy —1E1 since higher-order bound states at
that energy would require a considerably less-probable
potential. In three dimensions this is the condition
that the dimensionless radial Schrodinger equation

[ —d'/dr' wexp( —r') t—u(r) = —f(w) u(r) (4)

have an eigenfunction u(r) =Q(r)/r with a single
node at r=0. Here w=—2ma2VO/hz and the required
constraint is that f(w) =2ma 1E1/h . We have nu-

(H-L) tail and the Gaussian tail. We find that both of
these regimes are experimentally inaccessible for
reasonable choices of the rms potential fluctuation and
spatial correlation length L, whereas the crossover re-
gime (P —L) is observable and exhibits essentially
linear exponential behavior over many decades.

The disorder giving rise to exponential band tails is
produced by lattice vibrations, impurities, and other
deviations from perfect periodicity of the lattice. Since
on the time scale of an optical-absorption event, the
displacements arising from a finite temperature distri-
bution of phonons may be considered essentially
frozen, we are led to consider the density of states for
an electron in a static random potentia19:

[ —h"7'/2m+ V(x) ]P(x) = Ey(x).
With use of the central-limit theorem, the various
forms of disorder contribute to an essentially Gaussian
probability distribution for the Fourier components
V(k) of the following potential:

P1 V(k)j exp[ —S[ V]],

merically evaluated the function f(w). For d=3,
there is a critical strength w, = 2.95 at which a bound
state first appears. For w & w„ f(w) is nonzero and
is a smooth monotonically increasing function. For
f & 0.4, the inverse function may be accurately
described by the formula w(f) =2.7+3Jf +f.
Ho~ever, there are limiting cases in which analytical
results may be derived. For example, for localized
states in the very deep tail (A. &( L) the asymptotic
behavior may be obtained by expansion of the poten-
tial fluctuation in a Taylor series about r =0, so that
we ' is replaced by w(1 —r2). The eigenvalue of the
associated harmonic-oscillator equation corresponding
to the lowest wave function which vanishes at r =0 is

f( w) = w —aV w ( w ~). Since the dimensionless
localization length is of order w '~ as w 0, this is
short compared to the range of accuracy of the Taylor
expansion and the harmonic-oscillator approximation
is self-consistent in this limit. If we define z = (L/a)2
and y=1E1/~L, where ~L =—h2/2mLz, then (3) be-
comes

S=2 V2~ /e2S= [w(y/z)]2z2[z(2 —z)] +2 (5)

where z is the single variational parameter and the
function w is the inverse of the function fand has an
argument f=y/z = 2ma21E 1/f2 In th. e harmonic-
oscillator limit w —f+ aVf, and sufficiently deep in
the tail the kinetic-energy term Alf is negligible in
comparison with the binding energy f. It follows that
S has a local minimum at z=1 and that at this
minimum S=1E12/2 V2, . Since the averaged density
of states at —1E1 is simply the sum of the number of
potential fluctuations having a ground state at precisely
—1E1, weighted by their probability of occurrence,
this yields the exponential part of the deep-tail Gauss-
ian density of states. The energy-dependent prefactor
is determined by consideration of fluctuations about
the most probable potential well and requires a formal
analysis as discussed previously. '0 "

Using the numerical solution of the function f( w)
for the Gaussian potential, we have obtained the ex-
ponential part of the density of states in the tail
throughout the energy spectrum. This is illustrated in
Fig. 1. The Gaussian potential Ansatz is asymptotically
exact for the deep tail (see below), whereas there are
small deviations of the most probable potential fluc-
tuation from a Gaussian shape in the shallow tail. The
density of states exhibits a relatively linear exponential
behavior,

p(E) —exp( —14.41EleL/ V2, ) (d=3),
over a range 0.1 & 1E1/~L ( 2. For instance, with
V, ,—eL —0.5 eV the accurate linear exponential ob-
servable over the range 0.1 & 1E1/ez ( 1 easily spans
fiv decades of the DOS. For 1E1/eL » 2, this
crosses over to the Gaussian density of states, whereas
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FIG. 1. Exponential part of density of states as a function

of y = IEI/~L exhibiting the Gaussian tail (y && 2), the Ur-

bach tail (0.1 &y (2), and the H-L tail (0(y & 0.1, see
inset). The nature of the most probable potential fluctua-
tion and wave function in each regime is illustrated schemat-
icaBy.

for ~E~/~L, && 0.1 there is a Halperin-Lax density of
states for which lnp(E) ——7.0~ E)'~2m (~2/ V2

Considerable physical insight may be obtained by
generalization of this physical argument to d spatial
dimensions. An elementary argument" reveals that
the essentially linear exponential behavior in d = 3 ar-

ises from the increasing importance of the correlation
L of the random potential in higher and higher spatial
dimensions for d & 4 and the consequent pinching of
the Halperin-Lax behavior into a narrower and nar-
rower enery regime near the continuum band edge.
The self-consistency of the Gaussian-white-noise ap-
proximation B(x)=@25"(x) relies on the constraint
that the scale of the potential fluctuation be long com-
pared to the actual spatial correlation length L. For
the white-noise model, the action (3) becomes

S—V02a~/y2 for a potential fluctuation of any shape
characterized by a single depth parameter Vo and range
a. For instance, in the case of a square well the con-
straint between Vo and a to produce a bound state at
energy —IEl takes the form IEI+ I/a'= Vo. For
d & 4, S has a local minimum when the ratio of the
range of the potential fluctuation to the electron de
Broglie wavelength is (a/A. )2= (4 —d)/d. Since this
ratio vanishes as d 4 for any fixed E, it is evident
that the influence of the correlation length L is felt
even for relatively shallow band-tail states in high
dimensions. In three dimensions it is the consequent
broad crossover regime between the Halperin-Lax tail
and the Gaussian tail which manifests itself in the Ur-
bach edge. The screened-Coulomb-impurity model of
Halperin and Lax9 involves longer-range correlations
than our model, and the corresponding crossover re-
gime does not exhibit such precise linearity.

In obtaining the variational function (5) we have re-
stricted our attention to potentials which have a
Gaussian form. A more general formulation follows
from a replica-field-theory representation of the aver-
aged one-electron Green's function. '0" An asymp-
totically exact density of states may be obtained by
saddle-point (instanton) evaluation of the relevant
functional integral. We have performed a detailed
comparison of the instanton method to the above sim-
ple physical argument and find complete agreement
apart from a 3% error of the numerical coefficient in
the Halperin-Lax region. A one-loop renormalization
of this instanton also reveals the existence of a shifted
continuum band edge of order V2, /4eL relative to
which the energy Eis measured. 20

An approximate analytical expression for the density
of states in d dimensions may be obtained from this
field theory by the assumption that the localized elec-
tron wave function takes the form

ill (x) = (ma') —«4 exp( —x'/2a')

where a is a variational parameter. This leads to an ap-
proximate density of states

—lnp(E) —S'(a~;„)= ( ,' de, + tEI)2—(l+2eL/~,)"2/2 Vr2~, , (7a)

r

e, =—t'/2ma =4(E(/(4 d) 1+{1+[4/(4 ——d)]'IEI/~LI
r

Setting d=3 and substituting (7a) into (7b) leads to
an extremely accurate analytical approximation which
is virtually indistinguishable to the naked eye from the
density of states in Fig. 1 throughout the deeper Ur-
bach and Gaussian regimes. In the shallower
Halperin-Lax region this Gaussian wave function An-

satz yields

lnp(E) ——8.0[E/(4 —d) ]'-«"j~'/ V,', .

The numerical coefficient here differs from the exact
result of 6.8 for d= 3 by 18%, leading to a correspond-
ing underestimate of the density of states. The formu-
las (7a) and (7b) have also been obtained by a
Feynman-path-integral representation of the averaged
one-electron Green's function. '7 It is evident from
these equations that the crossover between the Gauss-
ian tail and the H-L tail occupies an energy regime
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(1 —d/4) & ~E~//er & 4 which broadens as d 4.
In summary, we have derived by means of a simple

physical argument a quantitative theory of the elec-
tronic density of states in a correlated Gaussian ran-

dom potential exhibiting linear Urbach exponential
behavior over many decades. This arises from the in-

fluence of the correlation length of the disorder even
in the shallow-energy, ~iE~/er —(1 —d/4)z, part of the
tail. The Gaussian potential Ansatzyields a numerical-

ly accurate theory by allowing the wave function to
tunnel exponentially into the classically forbidden re-

gion for the shallow tail states in which the kinetic en-

ergy of localization becomes a significant fraction of
the potential depth. The Gaussian wave function An

satz underestimates this tunneling effect and accord-
ingly underestimates the density of states. We men-
tion finally that the precise slope and range of the Ur-
bach tail in a real material may be sensitive to the de-
tailed nature of the correlations of the disorder and the
presence of the valence (conduction) band. The
model we have presented provides insight into the
universality of Urbach tails and hopefully will provide
a valuable starting point for the systematic incorpora-
tion of band structure, polaronic, and excitonic effects
which may be important in particular materials. zo
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