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Local Modes in Anharmonic Solids and the Kondo Problem
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The quantum theory of local modes in molecules is extended to few-dimensional solids such as
polyacetylene. Local modes are found to be present below the phonon band no matter ho~ weak the
anharmonicity. The problem of the local mode interacting with a phonon background is reduced to
a Bose variety of the Kondo problem. Based on this analogy, a theory is constructed of thermal dis-
sociation of local modes and the generation of high local-mode quantum numbers through intense
radiation.

PACS numbers: 7S.30.Jvr, 63.20.pw, 64.10.+h

The vibrational excitations of most solids are well
described by harmonic normal modes (NM). The ef-
fect of anharmonicity is usually included through a fin-
ite lifetime for the elementary excitations (phonons).
What is less well known in solid-state physics is the
fact that molecules such as H20 and CH2, containing
weakly coupled anharmonic degrees of freedom, are
poorly described by the NM scheme. ' A classical ex-
ample is the C-H stretch mode in benzene. 2 If this
mode contains six vibrational quanta (the sixth over-
tone) then the lowest-energy state has all six quanta
localized on the same C—H bond. 3 This type of exci-
tation is called a local mode (LM). The Hamiltonian
for the vibrational spectrum of such molecules is
known2 4 and can be easily diagonalized. 5 The spec-
trum contains, in general, LM's, NM's, and combina-
tion bands. Both the spectrum and the optical absorp-
tion strength agree very well with experiment. In-
terestingly, it is much more complex to solve the clas-
sical initial-value problem6 than to find the eigenstates
of the quantum Hamiltonian because of the appear-
ance of quasiperiodic and chaotic orbits in the former
CBSC.

The remaining degrees of freedom of the molecule
such as C-C vibrations can still be described as normal
modes. These so-called skeleton modes7 (SM) form a
quasicontinuous background on which the LM's are
superimposed. s Radiationless energy transfer from the
LM into the SM continuum is the main contribution to
the width of the LM absorption spectrum.

Recently, there has been much interest in the ques-
tion of whether LM's can occur in solids and how they
may be generated. In this Letter we will outline how

the quantum theory of LM's in molecules is extended
to chainlike compounds containing anharmonic optical
modes, 9 e.g. , the C-H mode in polyacetylene (Fig. 1).
Our principal results are as follows: If we ignore the
SM's then the LM Hamiltonian on a chain can be
mapped onto the one-dimensional Bose gas with at-
tractive interaction. The vibrational quanta play the
role of the bosons. LM's are simply the bound states
of this Hamiltonian and the NM's the scattering states.
The LM and NM spectra can be determined through
the Bethe Ansatz and, no matter how weak the anhar-
monicity, for a given number of quanta there is always
a narrow band of LM's below the NM continuum. In
the classical limit these bound states turn into solitons

LM

FIG. 1. Optical excitation of a chain of LM anharmonic
oscillators (e.g. , polyacetylene; see inset) coupled to a
skeleton-mode (SM) continuum. (a) Direct excitation by
single-photon absorption; (b) multiphoton absorption close
to the fundamental.
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of the nonlinear Schrodinger equation. 'p This result
means that LM's must be present in few-dimensional
solids.

To include the effect of the SM's on the LM's we
must understand how a local state with self-interaction
is affected by interaction with a continuum. The cou-
pling of the SM background of the LM's can be
represented as a Bose variety of the Anderson Hamil-
tonian" if we assume a smooth density of states for
the background modes. Using the Hartree-Fock ap-
proximation, we find that as a function of temperature
a first-order phase transition takes place to a state of
high LM occupation numbers [Fig. 2(a) j.

LM's can be optically excited in two ways. The first
option is single-photon absorption from the ground
state to the Nth overtone [Fig. 1(a)] and the second is

multiphoton absorption with the drive frequency in
resonance with the fundamental of the LM [Fig. 1(b)].
The LM hybridizes with the radiation field, as does
any optically active mode, to form a polariton. The os-
cillator strength drops exponentially with N and the
spectral width increases linearly with N so that only
low overtones can be excited (in molecules N & 8).
Multiphoton absorption is a "many-body" problem
but through the analogy with the Anderson Hamiltoni-
an we find that SM's can transfer vibrational energy to
the LM and high overtones can be excited if the
source is intense. However, the energy transfer from
the SM"s has again the character of a first-order phase
transition and an "energy barrier" separates the re-
gime of low LM occupation numbers from the high
occupation numbers [Fig. 2(b)]. The nature of the
barrier is obvious from Fig. 1(b): Because of the
anharmonicity a drive frequency which could sustain a
high overtone cannot excite low overtones.

We start by constructing the LM Hamiltonian for a
chain of anharmonic oscillators. The spectrum of
most observed anharmonic vibrational modes is well
fitted by the Birge-Sponer relation'2:

E(N) =trupN b, EN (N=—1, 2, 3,. . .),

with trop= 3000 cm ' for the C-H stretch mode and
b, E=50 cm '. Note that when N is of order tcup/
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FIG. 2. Phase diagram of an anharmonic chain-like com-
pound with local modes of fundamental coo coupled to a con-
tinuum background: (a) as a function of temperature, and
(b) as a function of the drive frequency co. The dissociation
threshold for the occupation number (c c) is indicated by a
dash-dotted line, and unstable solutions of the self-consis-
tency equation by a dotted line.

2d E, E(N) stops increasing with ¹ This corresponds
to dissociation of the bond. The chain couples nearby
oscillators (Fig. 1). In the molecular case kinetic cou-
pling between adjacent oscillators is sufficient to ex-
plain the observed spectra. 4'3 Kinetic coupling
between oscillators has the form [ G(1, 2)/ M]g, P(i)
&&P(i+1), where P(i) is the momentum of the ith
oscillator, M is the oscillator mass, and G(1, 2) is of
order 0.1-0.01. We will use a Hilbert space spanned
by the eigenfunctions of the individual anharmonic os-
cillators and a second-quantized form of the Hamil-
tonian where the Bose creation operator c (i) adds one
quantum of vibration to the ith site. If we use a
Morse potential for the C—H bond then the spectrum
of Eq. (1) is exact. The largest matrix elements of P
between two Morse eigenfunctions connect modes
whose occupation numbers differ by 1. In second-
quantized notation this means that we can approximate
P as i(Mtcop/2)'i2(c —c), as for a harmonic oscilla-
tor. The LM Hamiltonian in second-quantized form is

I then

&= X,{to)pc'(i)c(i) AEc'(i) c—(i) c'(i) c(i) + —,
' G(1, 2)ta)p[c'(i) c(i+ I ) +c.c.]

——,
' G(1,2)tcop[c'(i) c (i+1)+c.c.]}. (2)

This would be a 1D Bose gas were it not for the last
term in i'V Now, for .G(1, 2) =0 the number of bo-
sons N is conserved. The ground state in the N-

particie sector is then an N-particle bound state with all
N quanta on the same site. This state would be highly
degenerate because of the different choices of that
site. Excited states in that sector are separated by hE
from the ground state (they are the combination

I

bands). Different sectors are separated from each oth-
er by trop which always is far larger than AE. For
G(1,2) finite the degeneracy is broken and N is no
longer conserved. However, if we include mixing
between states of different N perturbatively, then to
lowest order in G (1,2) the effect is of order G (1,2) 2

which is very smail. Allowing the perturbation to mix
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only degenerate states or states separated by AEmeans
that we can neglect the last term in 0which reduces
the problem to finding the spectrum of the 1D Bose
gas with attractive on-site interaction. The W= 1

eigenstates (or }1)states) of this Hamiltonian are NM
plane waves with dispersions E'(k):

Ei(k) =@coo—AE+ G(1 2)tcuocosk

The N = 2 eigenstates are two NM plane waves

(}1,1) ) and one two-particle bound state ( }2)) with a
binding energy Eb2 below the ~1, 1) continuum:

Ep'= 2~ G(1, 2)hruo} —2[[G(1,2)fo)0]'+ DE'}'~',

(4)

and another bound state above the continuum.
For general N and strong anharmonicity, the single-

oscillator spectrum, Eq. (1), remains essentially valid.
For general Wand weak anharmonicity the Hamiltoni-
an can be diagonalized by the Bethe Ansatz, t4 and the
binding energy of the W-boson bound state }W) below
the W-particle NM band edge is

Ep+= ——,
' [AE2/G (1,2)fQio] N2(N —1).

An N-particle bound state has an effective mass pro-
portional to N and so the LM dispersion is reduced by
1/N compared with the NM dispersion. For large N
the boson probability density of an W-particle bound
state centered at the origin is'5

N'[6b, E /G(1, 2)tee ]'~
pw(x) = . . . ' ', (6)

4cosh { ,
' N—[66E2/G(1,2)hcuii]x}

and so the LM width is proportional to 1/N. This is
also the one-soliton solution of the nonlinear
Schrodinger equation'0 which is indeed the classical
continuum limit of our 1D Bose system. '6 Thus for
any N the LM is the lowest-energy excitation and for
large W the LM reduces to a classical soliton. A LM in
a solid thus behaves like a particle slowly tunneling
from site to site. The coupling to SM's will have two
important effects: It suppresses tunneling'~ and leads
to LM decay. For large N, the LM effective mass is
large and, to first order, we can neglect tunneling, re-
stricting ourselves to a LM on just a single site [see
Eq. (6)]. This approximation means that we cannot
discuss LM transport properties. The coupling of the
LM to the SM's is then taken over from the case of
molecules'8:

~= $„e(k)ak a„+toOc c aEc'cc'—c+ f c'X„V(k)a„+c.c.],

where n(~) is the mean occupation number of the hy-
bridized single-particle levels. If we use the Bose oc-
cupation-number distribution then the self-consistency
equation reduces top, (e) =-=1

(e —h o)o+ 26E(c c) ) + h2

where k is the wave vector of a SM with dispersion e(k) and creation operator a (k). V(k) is the coupling
strength. Since the background consists of contributions of many different degrees of freedom, V(k) is assumed
to be a random function. This Hamiltonian is a Bose variety of the Anderson Hamiltonian which is used to treat
magnetic impurities in metals, the Kondo problem, with the occupation number of the LM corresponding to the
impurity moment. As is true for the Kondo problem, we may gain qualitative insight using the Hartree-Fock (HF)
approximation. In the HF approximation we assume that the ground-state wave function is the product of single-
particle states } n), each of which is a hybridized combination of a SM and the LM. The single-particle states

~ n)
diagonalize the HF Hamiltonian:

SHF = Xke( k) ak ak+f cuoc c —2b, E ( c c) c c+ [c Xk V( k) ak+ c.c.], (8)

where (c c) is the expectation value of the number of
quanta in the LM }c). The most important quantity is theorem. Typically, b, =20 cm for the C-H stretch.
the probability per unit energy p, (~) =X„5(e—e„) We still must determine the occupation number
x }(c}n)}z for a vibrational quantum of energy ~ to (c c). The self-consistency requirement is
find itself in the LM (the LM density of states). his t d~An(~
LM density of states is the imaginary part of the pro-
jection of the Green's function on the LM. The 6 —AQ)0+ E c c +5
Green's function of a quadratic H-F Hamiltonian is
easily found and the result for p, (e) is a Lorentzian,

centered close to the fundamental. The width 5 of the
Lorentzian is m( V ) p, where p is the SM density of
states. The time r spent by a vibrational quantum in
the LM is h/A. The width of the LM density of states
is also the spectral width for optical absorption at the
fundamental frequency as follows from the optical

kBT A(cc)= 2[e~,—2SE(c c) ]'+b,

with A —ln( ka T/~;„) for ka T && tcoo and A
—ln(hcuo/em„) for taboo)) kaT, where e;„is a low-

frequency cutoff for the SM's. The resulting phase di-

agrarn can be constructed graphically. For low tem-
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peratures there is only a single solution to Eq. (11),
with (c c) = (kriT/~)/JA/(&rap)2, quite small. For
T & T, , with kaTt = (~h/A)(trip/25E), three solu-
tions appear, two of them stable. The new stable solu-
tion has a high occupation number: (c c) =trap/25E,
just below the threshold for dissociation of the LM.
However, the intervening unstable solution is an ener-

gy maximum creating an energy barrier between the
two solutions. Only at much higher temperatures,
T & T2, where kaT2= —,', (~/AA)(&t0p) /2b E, does
the small —(c c) solution disappear. This thermally
induced dissociation is a collective energy transfer
from the SM background to the LM's and is similar to
a first-order phase transition [Fig. 2(a)].

If the LM induces a polarization oscillation, then it
can be excited by a radiation field. The frequency-
dependent dielectric constant can be computed in
linear response. However, the oscillator strength for
exciting an N-quantum LM drops exponentially fast
with N In the strong-anharmonicity limit'9 Inf(N)
= —(a+ bN) with a = 4.28 and b = 1.22 for the C-
H stretch mode. For weak anharmonicity our Bethe
Ansatz gives a similar exponential dependence on N.
In addition, the LM lifetime also drops with
r(N) = r/N, and so high overtones cannot be excited
in this way. High overtones could be excited by in-

tense radiation in resonance with the fundamental
(multiphoton absorption). Linear response is not ap-
propriate, but we can use the HF self-consistenty con-
dition. The Bose distribution must then be replaced
with the appropriate steady-state nonequilibrium distri-
bution. We will discuss two limiting cases for n (e). If
the optically excited phonons thermalize rapidly, then
we may still use the Bose distribution but now with an
effective temperature T'. We then simply find our
previous results but replace T by T . If the excited
phonons do not thermalize at all, then the occupation
probability peaks at e =it fee, where c0 is the frequency
of the radiation. The self-consistency equation is then

(')=- 3 (n) I (12)
[lt (ai —o)p)+25E(c c) ]2+52 '

with (n) the average occupation number of the
hybridized LM-SM's of frequency c0, and I the width
of the steady-state distribution, presumed smail com-
pared to b, . Far from resonance (c c) is small, of or-
der m tb (n)I /[h(ai —"~p)]2. If we increase co from
zero, we first reach a threshold cot=cop —25E(n)I'/
hmA, ~here a second solution appears with a large
value of (c'c), of order ~ t(n)I'/5, which may or
may not be below the dissociation threshold. The
second solution is again separated by a barrier from the

first. For larger ai, the first solution vanishes above
~z=~p —& t[(27/2~)(n)1&E&]ti', awhile (c'c)
drops rapidly for the remaining solution. If on the
other hand we reduce ca from co » asap, we start on the
second solution, and high values of (c c) can be
reached without having to overcome the barrier [Fig.
2(b)]. This appears as a promising possibility to excite
high overtones.
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