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Four-Terminal Phase-Coherent Conductance
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A conductance formula for a sample of arbitrary shape ~ith four terminals is derived to describe
transport in the limit where carriers can traverse the sample without suffering phase-destroying
events. The Onsager-Casimir symmetry relations are deduced, Experiments measure an off-
diagonal Onsager coefficient and the magnetoconductance of such a sample is asymmetric even in
the presence of an Aharonov-Bohm flux only. Symmetry relations between conductance measure-
ments which exchange the role of current and voltage leads are predicted.

PACS numbers: 72.15.6d, 73.60.Dt

Experiments on small normal wires and loops' 3 in
the presence of a magnetic field have revealed a mag-
netoconductance which is asymmetric under magnetic
field reversal. '2 In these experiments the inelastic or
phase-breaking length is large compared to the dis-
tance over which the voltage drop is measured. Such
an asymmetry is interesting in view of the naive expec-
tation that the measured conductance corresponds to a
diagonal Onsager4 5 coefficient and that therefore the
conductance should be symmetric. To be sure, there
are a number of effects which can give rise to an asym-
metric magnetoresistance, such as a classical Hall con-
tribution to the conductance. However, Buttiker and
Imry, analyzing the symmetry of a Landauers conduc-
tance formula, 9'o found that the magnetoresistance
can be asymmetric even in the presence of an
Aharonov-Bohm flux only. On the other hand,
Al'tshuler and Spivak, " using a weak-localization ap-
proach, maintained that the Onsager relations should
hold and that only magnetic impurities could account
for the observed asymmetry.

It is the purpose of this Letter to clarify the oc-
currence of asymmetric magnetoresistances. I propose
a Landauer conductance formula w'hich treats the
current and voltage terminals in a four-point probe set-
up explicitly, and on an equal footing. Two of the
leads carry current to and from the sample and two
leads measure the voltage. Previous work on conduc-
tance formulas, s '0'2'3 as far as it was concerned with
determining voltage drops over distances short com-
pared to an inelastic length, assumed potentiometers
which are "weakly coupled"' to the conductor, and
matches only currents and not their phase-dependent
amplitude at the junction of the conductor and the vol-
tage lead. In contrast, I take into account that the car-
riers "see" the whole conductor, including the voltage
probes, within a phase-breaking length. My result per-
mits the study of symmetries of the conductance
under reversal of the role of the current and voltage
leads. I show that such a four-terminal conductor
obeys the Onsager relations. 4 5 However, experiments

measure an off-diagonal Onsager coefficient and the
resulting conductance is thus asymmetric under mag-
netic field reversal. The Onsager relations imply sym-
metry relations between conductances measured in
different lead configurations, known as reciprocity
theorems for multipoles. '" These symmetries are re-
vealed in new experiments' specifically undertaken to
clarify the asymmetric magnetoresistance.

Consider the conductor shown in Fig. l. A field
dependence is introduced by studying the response
of the conductor to an Aharonov-Bohm (AB) flux
through the hole. to'6-'s In a uniform magnetic
field, ' 3 there are, in addition to the conductance oscil-
lations with fundamental periodt7's 40= bc/e, also
aperiodic conductance fluctuations. "9 While I focus
on the AB oscillations, my conclusions apply equally to
the aperiodic conductance fluctuations. The leads in
Fig. I are connected to reservoirs which are at chemi-
cal potentials p. t, p, 2, p3, and p.4, respectively. The
reservoirs serve both as a source and sink of carriers
and energy and have the following properties: At zero
temperature they feed the leads with carriers up to the
energy iu, , Every carrier coming from the lead and
reaching the reservoir is absorbed by the reservoir ir-
respectively of the phase and energy of the incident
carrier. Technically, it is convenient to introduce a
piece of perfect wire (unshaded part of the leads in
Fig. 1), free of elastic scattering, between the disor-
dered terminals and the reservoirs. First I assume that

FIG. 1. Disordered normal conductor ~ith four terminals
connected via perfect leads (unshaded) to four reservoirs at
chemical potentials p, l, p, 2, p, 3, and p, 4. An Aharonov-Bohm
flux 4 is applied through the hole of the sample.
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these perfect leads are strictly one-dimensional quan-
tum channels; i.e., there are only two states at the Fer-
mi energy, one with positive velocity (taken to be the
direction away from the reservoir) and one with nega-
tive velocity. Later I discuss the multichannel case.
Scattering in the sample is elastic; inelastic events oc-
cur only in the reservoirs. The elastic scattering prop-
erties of the sample are described by probabilities
T&(Ci) for carriers incident in the lead j to be
transmitted into the lead i and probabilities Ri&(4) for
carriers independent in lead i to be reflected into lead t'.

Current conservation and time-reversal invariance in
the presence of a flux imply

Ril(@) Rli( +) Tii(C ) ~jl(

Let us determine the currents in the leads. The po-
tentials p, , are arbitrary within a range at the Fermi en-
ergy which is so narrow that the energy dependence of
the transmission and reflection probabilities in this
range can be neglected. It is convenient to introduce a
fifth chemical potential p, o which is smaller or equal to
the lowest of the four potentials p, Below p, o the
states with negative and positive velocity are filled and
zero net current flows in each of the leads. We need
only to consider the energy range bp. , =p, , —p, o above
p, o. The reservoir i injects a current eu, (dnt/dE)b. p, i
into the lead i Here. v, is the velocity at the Fermi en-
ergy in lead i, and dnt/dE = I/2~&ii, is the density of
states for carriers with negative or with positive veloci-
ty at the Fermi energy. Thus-the current injected by
the reservoir i is (e/h)Ap, Consider the current in
lead 1. A current (e/h ) (1 —

Ri i )hp 1 is reflected back
to the reservoir 1. Carriers which are injected by the
reservoir 2 into lead 2 reduce the current in lead 1 by
—(e/h) T12/3i42 and similarly from the current fed
into leads 3 and 4 we obtain in lead 1 a current
—(e/h) ( T1313p3+ T1413i44). Collecting these results
and applying similar considerations to determine the
currents in other leads yields

I, = —(1 —R») p, , XTii&i . —e'
h

Note that these currents are independent of the refer-
ence potential p, o since the coefficients multiplying the
potentials add to zero. If we write Eq. (2) in matrix
form then both the rows and the columns add to zero.

The first goal is to demonstrate the Onsager rela-
tions. Casimir considers a four-pole configuration
where a current 11 is fed into lead 1 and is taken out in
lead 3 and a current 12 is fed into lead 2 and leaves the
sample through lead 4. Thus we have to solve Eq. (2)
under. the condition that 1, = —13 and 12= —14. The
result of such a calculation expresses the two currents

as a function of differences of voltages, V = p, ;/e,

11 ~11( Vi V3) ~12( V2 V4) ~

1,= —n„( V, —V, )+~„(V, —V„).

(3a)

(3b)

0'12= (e /h)(T12T34 T14T32)/S,

&21 = (e'/h ) ( T21 T43 T23 T41)/S,

„=(e2/h) [(I—R„)S
(4c)

—( T21+ T23) ( T32+ T12) ]/S, (4d)
where

S= T12+ T14+ T32+ T34

= T21+ T41 + T23+ T43 ~ (5)
Taking into account Eq. (1), we see that the diagonal
elements are symmetries in the flux ~11(4&)
=+11(—4), o.22(4) =o.22( —4), and that the off-
diagonal elements satisfy o, 12(iIi) =a21( —iIi). There-
fore, for the four pole of Fig. 1 the Onsager relations
hold. I should emphasize that this is not self-evident:
We have a complete spatial separation between elastic
processes in the conductor and the inelastic processes
in the reservoirs. We have introduced irreversibility'6
into the system only by specifying how the reservoirs
feed and draw current. Usual derivations of the On-
sager relations assume a regression of fluctuations to-
ward a local equilibrium distribution. 4 3

In a four-terminal experiment only two of the po-
tentials in Fig. 1 are measured! Suppose the current
flows from lead 1 to lead 3. The potentials measured
are p, 2= eV2 and iM,4= eV4 under the condition that the
current in leads 2 and 4 is zero. Taking 12=0 in Eq.
(3b) yields V2 —V4 = (n22/a21) ( Vi —V3) and with use
of this in Eq. (3a) the current 11 can be expressed as a
function of V1 —V3. Thus in this configuration the
measured resistance is

+ 13,24 ( V2 4)/11 ~21/(~11~22 ~12ii'2l ) ~

Since ~21 is not symmetric the resistance% 13 24 is also
not symmetric. This result, however, is completely
compatible with the Onsager symmetry relations. The
point is that we are measuring an off-diagonal Onsager
coefficient and not a diagonal element. It is V2 and V4

which determine the voltage drop across the sample
and not Vi and V3. Now we switch the current and
the voltage leads but keep the flux fixed. This means
that 11 in Eq. (3) is zero. This yields a resistance

+ 24, 13 ~12/(~11+22 ~12~21) ~

I find the following expressions for the conductances
of Eq. (3):

~11= (e2/h) [(1—Ri i) S
—( T14+ T12) ( T4i + T21) ]/S, (4a)
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The sum of these resistances, S &
= (8 i3 24+ % 2& i3)/

2 is symmetric, as a result of the Onsager relation,
~2i(@)=~i2( —4 ).

There are two additional possibilities of feeding two
currents into the conductor of Fig. 1. Each of these
four poles obeys the Onsager relations and the cur-
rents and voltages are as in Eq. (3) related by a set of
coefficients P and y. For a given fiux we find in gen-
eral six resistances

8 nw, kl
= ( h/e ) ( T»»t Ti„—Tk„Ti~ )/D

which differ in magnitude. D = (h/e ) (aiia22—~i2~2t)S is a subdeterminant of the matrix defined
by Eq. (2). All subdeterminants of this matrix are
equal and symmetric in the flux. D is independent of
the indices mnkI. The resistances given by Eq. (2)
obey % pg Q( R ik Q k/ and the reciprocity
relation'4 % ~ki(4) =% ki „(—4). The reciprocity
relation states that the resistance measured in the pres-
ence of a flux 4 is equal to the resistance measured in
the presence of a flux —C if the reversal of the flux is
accompanied by an exchange in the role of the current
and voltage leads. T'he six resistances which differ in
magnitude can be grouped into three pairs, each pair
attributed to a four pole. Thus in addition to g we
also have the combinations &i3= (&i4 32+ %32, i4)/2
and S»= (9 i2 43+ %43 i2)/2 which are symmetric in
the flux. We can now extend a relation, known in the
classical case in the absence of a field, '4 to the present
phase-coherent problem in the presence of a fiux and
show that 1 +g&+g„=0. In the experiments of
Ref. 15, which invoke the geometry of Fig. 2, the con-
figuration where current is fed and drawn from the
sample at the two leads to the left (or right) of the
loop, the resistances are too small to be measured. In
our language this implies g& ~ 0 and we have thus the
approximate symmetry I S I

—
I

h' pl. In this particular
geometry the symmetrical part of the measurable resis-
tances are all equal. I emphasize, however, that these
symmetrical resistances should not be confused with a
diagonal Onsager coefficient. Similarly, the antisym-
metric part & =(Qi243 +43 i2)/2 should not be
confused with an off-diagonal Onsager coefficient.

FIG. 2. Loop connected to leads longer than an inelastic
scattering length. Phase randomization is introduced by the
t~o reservoirs to the left and right of the loop. The
Aharonov-Bohm oscillations of this conductor are sym-
metric.

The asymmetry discussed here is related to the Hall-

type effects discussed elsewhere, 2p but more general
since we do not require a particular topology.

Let us generalize these results and assume that the
perfect leads have many states at the Fermi energy. In
leads of finite cross section we have to consider both
the motion of carriers transverse to the lead and the
motion along the lead. Motion in the transverse direc-
tion is quantized and characterized by a set of discrete
energies, E„. To this energy we have to add the kinet-
ic energy for motion along the direction of the lead,
t2k2/2m, such that, EF=A2k2/2m+ E„. For each en-
ergy E„which is smaller than E„we obtain two states
at the Fermi energy (quantum channel). Suppose that
all the leads are identical and support N quantum chan-
nels. The scattering matrix is then a 4N&&4N matrix
which can be written in the following form: The pro-
bability of a carrier incident in channel n in lead i to be
reflected into the same lead into channel m is denoted
by R« „, and the probability of a carrier incident in
lead j in channel n to be transmitted into lead i into
channel m is T«~„. Following Ref. 10 we assume that
the reservoir feeds all channels equally up to the
chemical potential p.&. The current injected into each
channel is then (e/h)hiLi, j independent of the velocity
and the density of states of this channel. The current
in lead i due to carriers injected in lead j is I& = —(e/
h) $ „T& b p J. Therefore, if we introduce the
traces R«g „R» „, T&=g „T« „, which have the
symmetry properties given in Eq. (1), the conduc-
tances in the multichannel case are given by Eqs.
(4)-(7), except that 1 —R« in the single-channel case
is replaced by N —R« in the multichannel case. Thus
the symmetry properties of the multichannel case are
the same as those discussed above for the single-
channel case.

Of particular interest is the implication of these gen-
eralized multipole symmetries with regard to Aharo-
nov-Bohm (AB) effect. Because of the AB effect, the
resistance, Eq. (6), has a contribution b, i cos(2n4/
4p —@ ), where @ is a sample-speciflc phase which
depends on the particular arrangement of the impuri-
ties in the conductor. If we exchange the current and
voltage leads, i.e., consider the configuration corre-
sponding to Eq. (7), the resistance, g 24 i3 must, be-
cause of the AB effect, have a contribution,
5 icos(2m@/ihip+ P ), with a phase of opposite sign
to that in 9 i3 24. Precisely this phenomenon has now
been observed by Benoit et al. '~ If we consider the
lead configurations corresponding to the measurement
of g i4 23 and & 23 i4 they exhibit an AB effect
b% cos(2mC/tip+@&) with a phase pii which is in
general different from q5 . The AB effect depends
only on the flux through the hole of the loop. Thus
the experiment confirms the prediction that the resis-
tance can be asymmetric even if only an AB flux is
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present.
The arbitrary phase Q or @& of the Aharonov-Bohm

oscillations is a consequence of phase coherence. Sup-
pose the carriers cannot reach the current and voltage
leads without suffering an inelastic event. Such a situ-
ation can be studied in the model of Fig. 2, where I
have introduced reservoirs, 2' with the same properties
as discussed above, between the loop and the leads.
Each carrier, entering the loop or leaving the loop, has
to traverse a reservoir, where the phase and energy are
randomized. The total resistance of the conductor is a
sum of three terms, " corresponding to the resistance
of the loop and the resistances of the voltage and
current leads. The resistance of the loop is determined
by a simple two-terminal resistance formulaz2 &0
=(h/ez)(Trtt ) ' which is symmetric in the flux,
i.e., we obtain a contribution to the total resistance
given by'0 5 8 cos(2n 4/40 —8) with 5 = 0 or m. The
totai resistance can still be asymmetric, as a result of
the classical Hall effect, and the aperiodic fluctuations
in the voltage and current leads, but the AB effect will

be symmetric in the flux.
The reason that the measured conductance is in gen-

eral asymmetric is because we measure local potentials
and not the potentials which are associated with the
reservoirs which serve as the current source and the
current sink. This is also the reason for the asym-
metry found in Ref. 7. However, the results presented
here differ from those of Ref. 7. The difference is due
to extra resistances which arise if we couple a voltage
lead to a conductor. 2' The asymmetry found in Ref. 7
decreases as the ratio of elastic scattering length to
sample length decreases, i.e., as the sample length in-
creases. In contrast, the asymmetry predicted by Eqs.
(3)-(7) persists as long as the carriers can traverse the
sample coherently. To see this consider the resistance
Q t3 z4 for the same topology of Fig. 2. For a long
sample we can assume that the probabilities T23 and
T4t which describe transmission through the sample
are small compared to the probabilities T2t and T43
which describe transmission from probe to probe on
either side of the sample. In this case the ratio A /g
which is a measure of the asymmetry is completely
governed by the transmission probabilities Tzt and
T43. The ratio & / P is zero only if T2t and T43 are
symmetric and this is the case only if the probabilities
which describe transmission through the sample are
strictly zero, i.e., if the length of the conductor
exceeds the localization length. I hope that the ap-
proach presented here proves useful in the discussion
of the size of the conductance fluctuations"9 in a
four-terminal configuration.

I am indebted to A. D. Benoit, S. Washburn, and
R. A. Webb for motivation and discussion of the ex-
perirnental results.
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