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Skyrmions with p and ra Mesons as Dynamical Gauge Bosons

Ulf-G. Meissner, ' Norbert Kaiser, Andreas Wirzba, 'b' and Wolfram Weise
Institute of Theoretical Physics, University ofRegensburg, D 8400-Regensburg, West Germany

(Received 13 May 1986)

%e extend the Skyrme model to incorporate the vector mesons p and ~ in a way consistent with
the non-Abelian anomalies of QCD and vector-meson dominance. The vector mesons are treated
as composite gauge bosons of a hidden SU{2)y 8 U(l) symmetry. We investigate the bulk proper-
ties of hedgehog-type Skyrme solitons in the baryon number 8 = 1 sector of this model.

PACS numbers: 11.40.Fy, 11.10.Lm, 12.40.Vv, 14.40.Cs

In the limit of a large number of colors N, QCD ef-
fectively reduces to a nonlinear meson theory. "
For two massless flavors with underlying SU(2)L
8 SU(2)tr chiral symmetry, and in the extreme low-

energy, long-wavelength limit, the theory is expressed
in terms of the Goldstone pion fields alone. A
minimal effective Lagrangean which synthesizes these
features and guarantees the existence of stable soliton
solutions is the Skyrme model. 3 4 It involves the 2 && 2
unitary fie1d U(x) = exp[is n (x)/ f ] and combines
the nonlinear tr model given by the Lagrangean
g o= (f /4)Tr[r')t'UB„U } with a fourth-order stabil-
izing term. Baryons arise as topological solitons with
the hedgehog Ansatz n =rF(r) and the boundary
values F(0) = ~ and F(~)=0.

Recent developments5 6 have pointed to the impor-
tance of vector mesons in a more complete meson-
based description of hadron physics down to length
scales of about 0.5 fm. Such an extension is suggested
by the phenomenological success of the vector-meson-
dominance model in describing electromagnetic in-
teractions of hadrons. It is also motivated by the role
of vector mesons in boson-exchange models of the
nucleon-nucleon force.

We follow here Bando et a!.,7 Igarashi et al. ,
s and

Fujiwara et a1.,9 who started from the observation that
the nonlinear tr model has a hidden [SU(2) v]i „
gauge symmetry. The corresponding gauge boson is
identified with the p meson. This scheme has a free
parameter which is fixed such that the Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSRF) relation m~
=2g2f2 holds, where g is the pen. coupling constant
determined by p urn decay. It is then shown 9 that
the vector-meson dominance of photon couplings fol-
lows naturally with no additional assumptions.

The to meson can be generated by extending the
gauge group to SU(2) i. 8 U(1). Here the anomalous
part of the effective Lagrangean, i.e., the Wess-Zum-
ino term, plays the essential role in providing the to

couplings. We work in a minimal scheme which has
neither a direct pro coupling nor an A, field.

The aim of the present Letter is to show that such a
scheme, with parameters completely determined in the
meson sector, leads to satisfactory results also in the
nontrivial (soliton) sector with baryon number B= 1.

Let us consider the following Lagrangean in terms
of the matrix-valued variables (L (x) and g it (x) con-
nected to the hidden left-right symmetry of the non-
linear a model. In the unitary gauge U =(( (i.e., $L,

2 2

Tr[t)„UB"U ] — Tr[($„()( + (23„tt: )(]2— Tr[F „Ft'"]+jwz,
2g

where f„=93 MeV is the weak pion decay constant. Furthermore, X)„=r)„—iV is the pertinent covariant
derivative induced by the SU(2) 8 U(1) gauge group with V„= (g/2)r p„+(g/2)&u~ as the associated gauge
fields (p and to mesons), and F„„is the corresponding non-Abelian field tensor F„„=ri„V„—Q„V„—i[ V, V„].
Thus, we have enlarged the hidden symmetry of Ref. 7 to SU(2) 8 U(1) with equal gauge couplings for SU(2)
and U(1). This leads to the relation mo2 = m2 =2g f2 (KSRF), generated in the second term of Eq. (1). The
term g wz stems from the action

I wz=10CJ~ Tr{(aLa& —attaL) —(aLattaLan) }, (2)

where at ttt) = D/Litchi/Ltttl=2)t'(Ltttigqttrl dx" are gauge-covariant differential one-forms defined in terms of
the variables gt &tel as introduced above, and their covariant derivatives 2)" as defined above (for details see Ref.
9). The constant C is given by —iW, /240m2 with W, the number of colors {N, = 3). We have restricted ourselves
to the first two terms of Eq. (4.5) of Ref. 9 with a special choice of their coefficients, Ci = —Cq = 10C (the solu-
tion to the homogeneous Wess-Zumino anomaly equation) for the following reasons: First, if one electromagneti-
cally gauges the Wess-Zumino term with U embedded in SU(3) one finds one-photon couplings of the form
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B» = (I/24m 2)e»" ' Tr{ U t)„U U' 8 U U t)p U].

Third, in the limit that the p field is expressed in terms
of the ('s [cf. Eq. (8) of Ref. 7], it exactly reduces to a
Lagrangean of the form'0

+wz gru~» B (3)

(e/2)A»B». To ensure vector-meson dominance on
the one-photon level in the isoscalar channel, one has
to cancel this term. The action given in (2) has this
feature; this can easily be checked from Eq. (6.2) of
Ref. 9. Second, the action (2) incorporates isoscalar
vector-meson couplings to the topologically conserved
baryon current

=3). The restriction to these terms is vital if one
wants to discuss vector-meson dominance based on
mesons coupled to conserved currents. In other
words, this is the simplest way of coupling the cu

meson to the skyrmion stabilized by p mesons, con-
sistent with the Wess-Zumino conditions. For g= 5.85 one obtains the physical p- and co-meson
masses m~=770 MeV= m„. It is evident that the
Lagrangean (1) should give rise to stable soliton solu-
tions even without the ad hoc Skyrme fourth-order
term.

To investigate the nontrivial sector of (1), we will
specialize to hedgehog skyrmions, with U(r) = exp(ir
rF(r) ). As a consequence of the hedgehog sym-

metry and the intrinsic parity of the vector mesons,
the most general forms for the p and ~ fields are

g„= (N, /2) g, (4)

with the coupling constant g„related to the gauge cou-
pling gby

gp»'~(r) = —e» rj'G(r)/rP',

cP(r) = o)(r)5»0.

(5)

(6)

in agreement with the results of KaymakcaIan, Rajeev, Here G(r) and cu(r) are continuous functions of r. In
and Schechter5 and of Meissner and Zahed6 (for N, terms of the functions F(r), G(r), and cu(r), the en-

ergy functional is obtained as

2 f~,2 2sin F 2f~
2'

2 2

E=4~J, «r F'+, +, [G —(I —cosF)] +m„f (I —cosF)2 2 2

+ [2r G' + G (G —2) ] ——a)' ——m„o) + a) F1,2 1 2 2 g sin F
2g'r4 2 2 27r

=—E~+E»+E~+ E»+E„+E „.
(7)

Finiteness of the energy and baryon number B= 1 im-
pose the following boundary conditions

F(o)=, F(-)=o,

G(o) =2, G( ) =o,
o)'(0) =0, o)(~) =0.

(8)

The functions F, G, and cu can now easily be obtained
by functional minimization. For f = 93 MeV, g= 5.85, and m„= 0, they are shown in Fig. 1. In Fig.
2, F(r) andG(r) are plotted in comparison with the
results of Igarashi et al.8 Since part of the repulsion in
our model is due to the co, F(r) and G(r) extend fur-
ther out in space. This means that the soliton will

have a larger (isoscalar) rms radius as compared to the
one found in Ref. 8. In Table I we give the skyrmion
mass m, k derived from Eq. (7), together with the rms
radius. Comparing with the results of Ref. 8, we see
that the mass has increased by —40'/0 due to the addi-
tional cu meson-induced repulsion.

The hedgehog root-mean-square radius rH (rms
radius), i.e., the baryonic charge radius rH2 =I r2
x B (x) d3x, rH —0.50 fm, appears to be small if com-
pared with the nucleon charge radius. However, one
should note that our model incorporates vector-meson
dominance if coupled to the photon field, so that part
of the (isoscalar) charge radius is given by the pro-
pagating co meson. One finds" that the isoscalar form
factor is

„,p, , exp( —m„(r —r'(), m'
GI 0(q) = ' d r e'~'J d r' " Bo(r') =

2 2 Bo(q),
4m r —r' m„+q (9)
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FIG. 2. The pion and p-meson profiles F(r) and G(r),
respectively, compared with the results of Ref. 8 (dashed
lines) for m„=0, g=5.85.

where Bp(r) is the baryon-number density and Bp(q)
its Fourier transform. The corresponding rms radius is

ri p= —62 1=0

dq q=o
2

2
+ rHz = (0.79 fm)2

m~
(10)

in good agreement with the experimental value 0.78
fm. A similar relation will also hold for the isovector
charge radius which involves the p meson, but here
one needs to project onto states of good spin and iso-
spin. " In the model without the cu (Ref. 8) the
(hedgehog) axial-vector coupling constant g„as ex-
tracted from the tail of the pion fteld F(r) is much too
small (gq =0.32 for g=5.85 and m =0). We find
the more reasonable value gz = 0.81. This result is not

FIG. 1. The chiral angle F(r ), and the vector-meson pro-
files G(r) and ru(r) for g=5.85, f„=93MeV, and m„=0.
Notice the different scale for the co meson.

surprising since the strength of the pion field depends
on the spatial extension of the source to which it cou-
ples.

We conclude that the nonlinear a- model, unified
with p and co mesons as gauge bosons of the hidden
SU(2) q S U(1) symmetry, has stable B=1 soliton
solutions with satisfactory properties and size. Apart
from the pion mass, the model has only two parame-
ters: the pion decay constant f and the universal p-
meson coupling constant g, both of which are uniquely
fixed in the meson sector. The t0-meson coupling
strength is determined by the Wess-Zumino term to-
gether with universality, with no additional parameter.

The repulsion induced by the c0 meson stabilizes the
soliton at an rms radius rH of about 0.5 fm. This
should be compared with the much smaller rms radii
rH & 0.3 fm obtained according to Ref. 8 in a model
without an co meson, in which the stabilizing mecha-
nism is provided by the p meson alone.

We have pointed out that a soliton size of half a Fer-
mi is quite reasonable: If the system is probed by a
photon, the inherent vector-meson dominance implies
that the apparent mean-square radius seen by the pho-
ton is not rH2, but rH+ re with rq=6/mt ——(0.62 fm)2

TABLE I. Various contributions to the skyrmion mass (M,k) and size (rH), as defined
in (7), for m„=0 (chiral limit) and m = 138 MeV. For comparison, the results of Ref. 8
are also given.

This work
m„=138 MeV

Following Ref. 8
m„= 0 m„= 138 MeV

E (MeV)
E. (Mev)
E~ (MeV)
E„~ (MeV)
E„(Mev)
E „(MeV)
M, k (MeV)
r„(fm)

~ ~

356
29

-228
455

1431
0.52

773
40

372
33

-255
509

1473
0.49

418

525
104

1048
0.28

400
8

537
112

1057
0.27
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because of the intermediate vector meson of mass my
connecting the photon with the soliton. The combined
effect brings one close to the observed nucleon elec-
tromagnetic radii.

In the limit of infinite vector-meson masses mq, but
keeping g/mv fixed, the Lagrangean (I) reduces to the
standard Skyrme model with the fourth-order term re-
lated to the p meson and an additional sixth-order
term (gpm„)'B„B&.

It is obvious that by taking this limit one ignores im-
portant physics at length scales W6/mz-—0.6 fm.
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