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Nonuniversality and Breakdown of Scaling in a Two-Component Coagulation Model
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We investigate the kinetics of a coagulation process involving t~o distinct bifunctional monomer-
ic species A and B (which can be ascribed a positive and negative "charge, " respectively) with
bonding allo~ed only between A and 8. %hen the rates for charged-charged, neutral-neutral, and
neutral-charged reactions are all distinct, ~e find, from the solution to the mean-field rate equa-
tions, that (i) the kinetic exponents are nonuniversal and (ii) a scaling description of the cluster-
size distribution fails. Similarly intriguing results are also found for the kinetic behavior belo~ the
upper critical dimension.

PACS numbers: 05.40, +j, 64.60.—I, 82.20.Pm, 82.70.Dd

Coagulation is a fundamental kinetic phenomenon
in which clusters irreversibly bond, upon colliding, to
form clusters of ever-increasing size. This phenome-
non underlies a wide variety of nonequilibrium
processes in nature, including, e.g. , aerosol physics, '

gelation, and galactic clustering, thereby attracting
considerable theoretical attention. 5 ~ Many current
theoretical developments stem from analyses of the
(mean-field) rate equations describing the coagulation
processes. A coherent theoretical description has now
emerged~ in which the kinetic behavior can be classi-
fied according to general features of the dependence of
the matrix of reaction rates, K(ij ), on the incident
cluster masses i and j. In general, characteristic physi-
cal quantities exhibit power-law temporal behavior,
with universal values of the exponents, and with a
cluster-size distribution approaching a scaling form at
long times. These notions of universality and scaling
underlie much of our present understanding of coagu-
lation phenomena.

In this Letter, we consider a two-component coagu-
lation model where fundamentally different behavior
occurs: Nonuniversal kinetic exponents are obtained,
and scaling is found to be violated. The model in-
volves two distincts bifunctional monomeric species A
and 8, with bonding allowed only between A and 8
(Fig. 1). The physical motivation for considering such
a model is that many real gelation processes are of an
A-8 form. 9 Our restriction to bifunctional monomers
forces clusters to have an alternating linear structure.
While this restriction may be somewhat unrealistic,
our model exhibits a wide range of novel and surpris-
ing behavior, while being sufficiently simple to be
tractable analytically.

If we ascribe a unit positive "charge" to the A's and
a unit negative "charge*' to the 8's, then a very ap-
pealing picture of the coagulation process can be
developed. According to the A-8 bonding scheme and
the linearity of the clusters, only neutral clusters, or
clusters with charge +1, can exist. Furthermore, the
types of reactions that may occur can be divided into
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FIG. l. Schematic representation of a typical reaction in
A-8 coagulation. Notice that a neutral cluster can react ~ith
itself.

three general classes: (a) A positive cluster and a neg-
ative cluster can join to form a neutral cluster, (b) two
neutral clusters can coalesce to form a larger neutral
cluster, and (c) a neutral and a charged cluster can
form a heavier charged cluster (with the charge being
conserved). Reaction (a) is reminiscent of the two-
species recombination process, A + 8—inert, '0 "
while reaction (c) is similar to a single-species reac-
tion, A + A A to'2

Even at the level of a mean-field theory, it is natural
to consider the general situation in which the rates for
reactions (a), (b), and (c) are distinct, as neutral clus-
ters can react with themselves (Fig. 1), while charged
clusters cannot. From the mathematical point of view,
imposing distinct rates is equivalent to choosing a ma-
trix of reaction rates, in the description of the full
coagulation process, in which each element depends
only on the relative parity of the matrix indices. The
magnitude of the modulation in the matrix elements
controls the relative importance of reactions (a), (b),
and (c), and this modulation is the source of the novel
kinetic phenomena of our model. Our new results are
rather unexpected, since A-8 coagulation ostensibly
belongs to the universality class of coagulation with a
constant matrix of reaction rates7 (constant-kernel
coagulation) .

Let the rates for reactions (a), (b), and (c) be K, L,
and M, respectively. Furthermore, let us consider the
initial condition of equal concentrations of A and 8
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monomer, only. Then the rate equations for A-B
coagulation can be written as

j—1 OO

XK(kj —k)ckcj. k
—cj XK(j,k)ck, (1)

k=1 k=1

where c, is the concentration of clusters of mass j,
c2&+i = czj+i = —,

'
c2 +i, and with the matrix of reac-(+) C-)

tion rates given by

neutral-cluster decay at long times. They are

p+(0)
(M/K —1)[I+Kp, (0)] '

p+ (0)
in[1+ Kp+ (0) t],1+Kp+ t

K(ij ) =K for t' and j odd,

= L for i and j even,

= M otherwise.

(2)
1 p, (0)

(1-M/K) [I+Kp, (0)t] t&'

The most direct way to see the nonuniversality in our
model is by examining the temporal behavior of the
individual cluster densities. In one-component con-
stant-kernel coagulation, ck(t) generally decays as a
power-law in time, t ", with a universal value of the
exponent m=2, for all k, as t ~.7 Interestingly, in
A-B coagulation, we find that ck(t) varies as one
power law, t +-, for all odd values of k, and as a

second power law, t ', for all even values of k, with
w+ + wo, ln general.

To show this new behavior, we first consider the to-
tal density of neutral and charged clusters, from which
the monomer and dimer density, and more generally,
ck(t), follows directly. Thus we define the density of
charged and neutral mass, respectively,

pq(t)=—p+(t)+p (t)= Xcz, i(t),
j=1

po(t) = x c2, (t).
j~1

From (1), these quantities satisfy a closed system of
differential equations whose solutions for L &0 are

p+(0)
p+(t)=, po(t) = B p+(t), (4)+Epp t'

where

Thus we deduce that ao= 1 for M ~ K (with a loga-
rithmic correction appearing when M=K), and
no= M/Kfor M & K.

From these expressions for p+(t) and po(t), we
can now solve for ci(t) and c2(t), using Eq. (1).
When LAO, the latter quantities decay as t

+-and as
t ', respectively, with

B

M + B~, 1f Kp~~ 2S'+ —j, ,
EC E

= 2 w g
—1, otherwise.

However, when L = 0 and M )K, we find

1 1

2 (1 —K/M) '

Finally, when L = 0 and M» K, the cluster densities
decay faster than a power law, and the +exponents are
not defined. Instead we obtain

ci(t) —c2(t) —exp[ —ln't],

(8)
ci(t) —c2(t) —exp[ —[(const)t]' t ],

M & K.

E —M E —M E
OO

and where corrections to po(t), which vanish as t
have been ignored. Thus pq(t) and po(t) decay as

and as t ', respectively, ~ith n+ =o.o= l.
This time dependence coincides with that of the total
number of clusters in one-component constant-kernel
coagulation, where g„ck( t) —t, with n = 1.

When L =0, the charged-cluster decay is still given
as in (4), but there are now three possibilities for the

Thus we have found the novel result that the ex-
ponents w + and wo are nonuniversal being, in gen-
eral, irrational functions of the rate constants.

In order to discuss the breakdown of scaling in two-
component coagulation, let us first recall the statement
of scaling in conventional one-component coagulation.
This is often written in terms of relations involving the
basic kinetic exponents of coagulation, n, w, z, and 7.
Here the exponent z describes the temporal behavior
of the average cluster size, $k ck(t), which typically
varies as the power law t'. The exponent r arises in
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the mass dependence of the cluster density asymptoti-
cally as t ~ and kt ' 0, namely, ck(t) —k
x t " Th. e four exponents o;, w, z, and 7 obey the
scaling relations

(2 —r)z= w,

together with

&=z, T C 1; cx=w, T~~1.

(9a)

(9b)

G(z, t) = Xc2,(t)(z' 1). — (10)
J=1

With the boundary condition G(z, 0) =z —1 [corre-
sponding to c, (0) =&,i], we find that G(z, t) satisfies
a simple differential equation whose solution is

G(zt)=
( )

(1+Et)
(I+Kt )

"4' 4(1+A „/2)

where

A„= —(K/L) [1—[1+(L/K) (1 —z) ]'t'},
( 1 + LA /4K )

A (1+LA /E) '

(12)

The singularity in G(z, t) as a function of z is deter-
mined solely by the divergence of the second factor
which can be shown to be a simple pole located at
z, (t) —1+ (const) t '. As a result of this singularity,
we conclude that 70=0, while from the 1/t time

In two-component coagulation, we append these ex-
ponents with the subscript 0 or + to refer to neutral
or charged clusters, respectively. We have already ob-
tained the ~ and w exponents, and it is also immediate
to show, for all the kernels we are considering here,
that the exponents zo and z+ are always equal to unity.
Thus we require the 7 exponents in order to demon-
strate the loss of scaling in two-component coagula-
tion.

To find these two exponents, consider first the spe-
cial case K,LeO, M=O, which we can solve exactly.
Since M =0, the only reaction that monomers can un-

dergo is to coalesce into dimers. If the initial state
contains only monomers, then the dimers which are
formed initially serve as the starting point for a stand-
ard one-component constant-kernel coagulation pro-
cess involving only neutral clusters. The coalescence
of monomers serves as a continuous "feed in" of di-
mers necessary to sustain the reaction. The competi-
tion between the feed-in process and the evolution of
the system by constant-kernel coagulation is the
underlying source of the scaling breakdown.

To obtain the exact solution for M = 0, we introduce
the generating function

+ —,'(L —K) [(-1)'+(-1)J]. (14)

With the kernel in this form, we have made use of a
number of specialized techniques'4 to give a formal
solution for the generating function. The details are
quite complicated, and we merely quote the final result
for the 7 exponents. We find

r+ =2(L —K)/L,

~o = (E —L )/2K, for E ~ L/2,

= —K/L, for K ~ L/2,

(15)

Corresponding to this relatively simple behavior for vo
and r+, the w exponents, quoted in (6) and (7), now
become simple rational functions of the reaction rates.

From the generating function we find that the loss
of scaling for the neutral clusters stems from a
mechanism similar to the one discussed in Eq. (13).
Asympotically, c2J(t) turns out to be the sum of two
factors, with one factor characterized by the exponent
set (ro, wo), and the other factor characterized by a dif-
ferent exponent set (70, wo ). Using the general result

dependence of z, (t), we also deduce that zo= 1. Thus
for the neutral clusters, we have found the kinetic ex-
ponents vo = 0, zo = no = 1, and from (6), wo = 1, in
contradiction with the scaling relations given in (9).

We can gain further insight into the mechanism
underlying the loss of scaling by expanding G(z, t) in a
power series in z, thus yielding the complete expres-
sion for cJ(t) This . gives the following approximate
long-time expression for c~(t):

cj(t) —j ''(1+K/L) J(1+Et)
+ (const) t 2z, (t) (13)

where the factor arises solely from the feed-in process,
while the second factor arises from the evolution of
the system by constant-kernel coagulation. At long
times, cj(t) is dominated by the term decaying as 1/t,
implying that wo=1. However, because of the ex-
ponential mass cutoff in this first factor, it makes a
negligible contribution to any measure of the typical
cluster size at finite times, even though this factor
dominates asymptotically at fixed j.

When M&0, we are no longer able to derive a com-
plete solution for the generating function, but numeri-
cal simulations (described below) clearly indicate that
scaling continues to be violated over a wide range of
K, L, and Mvalues.

There is a second special case where considerable
analytic progress can be made in solving the rate equa-
tions and in demonstrating the loss of scaling. When
the reaction rates satisfy the condition M= (K
+ L )/2, K(ij ) can be written as a "sum" kernel

K(ij ) = —,
' (E+L)
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that z = 1, it turns out that each exponent set is con-
sistent with scaling, namely 2 —ro=o and
= wo. However, the asymptotic form of cq&(r) is
dominated by one of the composite-exponent sets
(ro, wii ) or (rii, wo), neither of which is consistent with
scaling.

Finally, let us investigate A-8 coagulation in a sys-
tem which is below the upper critical dimension,
where fluctuations in cluster density give rise to kinet-
ic behavior different from that predicted by mean-field
theory. For simplicity, consider only the simplest case
of the purely constant kernel, i.e., K=L=M As
mentioned previously, the coalescence of two charged
clusters to form a neutral cluster is analogous to the
reaction A+8 inert, where the product neutral
cluster plays the role of an inert species with respect to
the charged clusters. Consequently, we expect'0"
that for spatial dimension d less than an upper critical
dimension equal to 4, the density of the charged clus-
ters will decay as r di". Similarly, the coalescence of
neutral clusters can be thought of as the reaction
A+A A, which is of the general form of the
single-species reaction A + A inert. As a result, we
expect'0'~ that the density of neutral clusters will de-
cay as r ~i~ below an upper critical dimension equal to
2. Since A-8 coagulation is a superposition of these
two rather disparate reactions, very unusual kinetic
behaviors might be anticipated below the upper critical
dimension of either or both constituent reactions.

We have therefore performed numerical simulations
of A-8 coagulation in one, two, and three dimensions.

TABLE I. The kinetic exponents for A-8 coagulation for
the case E=L-M An equality sign denotes those ex-
ponent estimates which are very close to values which we

believe are exact.

One dimension
u+ =0.25 ciao= 0.5
~+ =0.25 ~() = 2.0
7+ -—1.36 70 = —1.6
z+ =0.5 zo= 0.45

Tvvo dimensions
++=05 0.0 = 1.0
e+ =0.5 Wo —2.0
7+ =0.75 70 = 0.0
zg =0.75 zo= 0.8

Three dimensions
o. + ——0.8 o.o= 1.0
~+ =1.5 No —2.0

v g =0.35 so= 0.0
z+ =0.95 zo =0.95

Mean-field limit
n+ =1.0 o.o= 1.0
e+ =2.0 %0= 2.0
v+ =0.0 so= 0.0
z+ =1.0 zo= 1.0

Our method is a simple extension of the techniques
previously developed for one-component coagulation
processes, '5 suitably modified to account for the con-
straint of A-8 bonding. The simulations exhibit a rich
phenomenology. In one dimension, p ~(r) and po(t)
appear to decay as t ' and as t ', respectively, as
expected on the basis of the analogy with related bi-
molecular reactions. There is a similar division of the
temporal behavior of the individual charged- and
neutral-cluster densities: c ( r ) varies as r

+-with
1

J
w+ ———,, and with wo —2, or greater. Our numeri-
cal results are summarized in Table I. In general, the
exponent set characterizing the kinetics of the charged
and neutral clusters each violate scaling. The behavior
in three dimensions is particularly intriguing, as the
charged-cluster kinetics is still rather different from
that of mean-field theory, while the neutral-cluster
kinetics roughly coincides with the mean-field results.

In a future publication, we will discuss the behavior
of two-component coagulation in greater detail, and
treat the interesting case where the system is initially
charged.
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