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Conductance fluctuations due to variable-range hopping in 10 metal-oxide-semiconductor field-
effect transistors are investigated in the presence of a magnetic field. With an increase in magnetic
field, the Zeeman effect shifts the fluctuations to lower or higher chemical potentials. These shifts
reflect the relative populations and occurrence of hopping from singly and doubly occupied sites.
Combined with density-of-states measurements, they can provide an estimate of the intrasite
Coulomb repulsion in 10 metal-oxide-semiconductor field-effect transistors. The orbital effect on
conductance fluctuations is also discussed.
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Electronic transport measurements in 1D metal-ox-
ide-semiconductor field-effect transistors (MQSFET's)
reveal unusually large fluctuations in conductance with
variations in gate voltage. ' According to Lee, this
random structure is a manifestation of Mott's
variable-range hopping (VRH) conduction. The origi-
nal motivation for this explanation was that MOSFET
wires are typically 30-70 times the localization length.
Since a Mott hop covers several localization lengths,
only a few hops are required to traverse the entire
sample. In the VRH model, each hop is exponentially
activated and the resistance of the sample is deter-
mined by a critical hop at the percolation threshold.
Since the resistors have a log-normal distribution, vari-
ations of chemical potential can change the sample
resistance by orders of magnitude. A recent study of
resistance fluctuations as a function of sample size4 re-
veals that the average of the logarithm of the resis-
tance increases as (In2nL)' 2 while the relative magni-
tude of the fluctuations decreases as (In2nL)
The resistance fluctuations are therefore inherent in
the VRH model and not just due to finite-size effects.
The similarity between resistance fluctuations in the
VRH model and those observed experimentally sug-
gests that the experiments are probing something fun-
damental, namely, a critical hop between a pair of lo-
calized states. This presents the exciting possibility of
investigating the effect of magnetic field on an indivi-
dual hop between a pair of localized states. Experi-
ments on the effect of magnetic field on resistance
fluctuations in ID MOSFET's are in progress. s

The influence of magnetic field on variable-range
hopping conduction enters through the Zeeman shift
and changes in wave functions of localized states.

With an in«eased magnetic field, we find that the Zee-
man effect rigidly moves conductance fluctuations to
lower or higher values of chemical potential; on the
other hand, the orbital effect does not cause any sys-
tematic shifts in the fluctuation spectrum. Rigid shifts
due to the Zeeman effect reflect the nature of the
dominant hopping process which, in turn, is related to
the relative population of singly and doubly occupied
sites in the system. Together with density-of-states
measurements, this information can be used to esti-
mate the value of the intrasite Coulomb repulsion in
1D MOSFET's.

Let us first discuss the effect of the Zeeman shift on
conductance fluctuations. We consider a system con-
sisting of N equally spaced sites, 6 each characterized by
the same localization length, cr ', and a random ener-
gy drawn from a uniform distribution function be-
tween + W/2. The Hamiltonian of our system is

P= Xt (Et —opaH) nt + Upi ntt nit,

where ( E, j are the random-site energies, U is the in-
trasite Coulomb repulsion between electrons with op-
posite spins, iu, a=e/2tnc is the Bohr magneton, and

is the number operator for an electron with mag-
netic moment cr = + 1 (in units of iM, a) at the ith site.

In the absence of spin-flip scattering, there are four
kinds of phonon-assisted hopping processes: (1) from
a singly occupied site to an unoccupied site, (2) from a
doubly occupied site to an unoccupied site, (3) f«m a
singly occupied site to another singly occupied site
with opposite spin, and (4) from a doubly occupied
site to a singly occupied site. The net hopping rate,
I'

ll, is a sum of the hopping rates for these four
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processes7'.

I'ii = $ (yj~'i exp[ P—(E;—grpaH —()] + y~~2i exp[ P—(2E;+ U —2() ]

+y&~ i exp[ p—(Ei+ E&
—2g)]+yij i exp[ p(—2E, +Ei+ U+aId, aH 3g—)] I/Z(E, )Z(Ej),

where y~'i (s= 1-4) are the intrinsic hopping rates
and Z(E)iis the grand-partition function. tat'i depend
on the overlap of wave functions and the difference in

energies between the initial and final states.
Choosing the chemical potential $ between + W/2,

we consider hopping of electrons between reservoirs
attached to the two ends of the sample. Following
Ambegaokar, Halperin, and Langer, s in the presence
of a small electric field and net current between sites i
and j is a product of the conductance, e2PI'&, and the
net electrochemical potential difference between these
sites. The exact total current and conductance of the
system can be obtained by solving the linear equations
arising from Kirchoff's law. Alternatively, because of
the exponential variation in I'& it is reasonable to ap-
proximate the total resistance of the system by the
smallest resistance R, such that the resistors R& ~ R,
form a percolation network connecting the reser-
voirs. 3 8 The pair of sites with resistance R, represents
the weak link in the percolation path.

Percolation calculations were performed for a 1000-
site system at several values of the magnetic field. In
our simulations, a=0.02 in units of spacing between
sites, energy is measured in units of W'so that W = 1,
and U=0.04 and 0.4. For given $ and H values, we
find that the contribution to the net hopping rate
comes predominantly from one of the four hopping
processes and that variations in f or H can change the
nature of the hopping process. Hopping process (1) or
(4) is dominant if the energies of both weak-link sites
are close to $ or f —U; processes (2) or (3) contribute
significantly when the energy of one of the weak-link
sites is approximately (—Uand the other close to (.

A magnetic field suppresses the occupation probabil-
ity of antiparallel-magnetic-moment states, thereby
reducing the hopping rates for processes (2) and (3):

At sufficiently high fields (p, aH SkT), hopping con-
duction occurs via processes (1) and (4). Figure 1(a)
shows that an increase in magnetic field shifts some of
the resistance fluctuations to lower values of chemical
potential. This feature is related to hopping process
(1) for the following reason: The population of
antiparallel-magnetic-moment states is suppressed by
the magnetic field and the hopping process is therefore
dominated by parallel-magnetic-moment electrons
with energy E, p, aH. S—ince the hopping rate depends
on the separation of these energy levels from the
chemical potential, an increase in His equivalent to a
reduction in f and the fluctuations associated with pro-
cess (1) therefore shift to lower values of the chemical
potential.

Figure 1(b) shows that some of the resistance fluc-
tuations shift rigidly to higher values of ( with an in-
crease in magnetic field. This is due to hopping of
electrons from doubly occupied sites to singly occupied
sites. Since the population of singly occupied sites is
dominated by parallel-magnetic-moment electrons, an
electron hopping from a doubly occupied site has to
have an antiparallel magnetic moment. Relative to j,
the energy of the hopping electron, E, +paH, in-
creases with an increase in H and the fluctuations
therefore shift to higher values of chemical potential.
Besides these rigid shifts, a change in magnetic field
can also alter the weak link so that the hopping process
changes from type (1) to (4) or vice versa. All of
these features are observed at both U=0.04 and 0.4.
It should be noted that for U=~ the fluctuations
arise only from process (1) and they shift to lower
chemical potentials with increase in the magnetic
field. 9

The rigid shifts in conductance fluctuations become
most obvious from the autocorrelation function,

C(( gH) = ([lnR(go, H) —(lnR(H)) ][lnR(go+), H+AH) —(lnR(H+b H)) ]). (3)

Figure 2 shows the behavior of C((,hH) in two dif-
ferent regions of (: Curve 1 is calculated over the
range $ = —0.1 and (=0, curve 2 over )=0 and 0.2,
and the averaging in (InR) is over corresponding re-
gions of f Between (=.—0.1 and 0, the fluctuation
spectrum is dominated by hopping process (1) and,
consequently, one finds a peak in C at g = p, a/g H. —
On the other hand, hopping process (4) is dominant
over the range g =0 and 0.2 and, thus, there is a peak
in C at g = p, a b H. Clearly, if the correlation function
C is calculated over the entire range of (, then the su-

perposition of curves such as those shown in Fig. 2 will
lead to a broad peak at ( =0.

The Zeeman effect enhances the average resistance
of the system because the magnetic fie1d suppresses
the population of antiparallel-magnetic-moment states
and consequently the rates for processes (2) and (3).
At sufficiently high magnetic fields, processes (2) and
(3) are completely suppressed and the fluctuations as-
sociated with processes (1) and (4) simply shift to
lower and higher chemical potentials, respectively.
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FIG. 1. Segments of resistance-fluctuation spectrum cor-
responding to Zeeman shifts of 0.032 (curve 1) and 0.04
(curve 2). In (a), curves 1 and 2 coincide if the former is
shifted by f = p, ahH =——0.008. However, an exactly op-
posite shift causes curve 2 to coincide with curve 1 in (b).

This results in the saturation of the value of average
resistance. The relative magnitude of fluctuations in
lnR decreases slightly with an initial increase in H, but
at higher values of H there is no further change aside
from statistical variations. The net enhancement of
the average resistance and the relative magnitude of
resistance fluctuations are insensitive to the value of
the intrasite Coulomb repulsion.

Next, let us discuss the influence of the orbital ef-
fect on conductance fluctuations. We consider a rec-
tangular strip of length La, width Ma (a is the lattice
constant) with L x M sites in the presence of a mag-
netic field perpendicular to the strip. The tight-
binding Hamiltonian for this system is

'/f= XEi [Im) (Imf+ X X V&~ Jim) (I'm'f,
lm &~ I'm' (4)

1, if m= m', I'= I +1,
exp[ + I (e/It ) ~a'],

if I= I', m'= m +1.

(5)

( E, j are random-site energies between + lI'/2,
where 8'characterizes the degree of disorder in the
system. Periodic boundary conditions are used in the y
direction. We obtain the eigenvalues and eigenfunc-
tions of this Hamiltonian for (50x20)- and (100
x20)-site systems at 8'=8 and H=O, 0.2, 0.4, 0.6,
and 0.8. (H is measured in units of Iic/a2e )From.
the eigenfunctions we calculate the inverse participa-
tion ratios, which are proportional to the square of lo-
calization lengths, )i..to The latter form the basis of
percolation calculations for 1D MOSFET's.

Starting with N (=1000 or 2000) uniformly spaced
sites along a wire, we assign each of them a random
energy between +0.5 and a localization length from
the distribution of localization lengths for that H
value. " To compare with our previous results, we
scale each & at H = 0 by an amount f so that their

-0.2

—0.02 0.02

FIG. 2. Results for the correlation function C(r„, hH)
due to the Zeeman effect at T'= T/TO=0. 2 where To-a W.
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x
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FIG. 3. Correlation function C(g, AH) in the presence of
the orbital effect at ? -0.2. Here, magnetic fields H and
4H [see Eq. (3)] are 0.2 in units oft e/a'e.

average is still n '. The factor f is then used to scale
the A. 's at finite values of H. Calculations for the hop-
ping probability between a pair of sites reveal that the
dominant contribution involves the larger of the two
localization lengths in question7 because of the broad
distribution of localization lengths. The hopping trans-
port, or equivalently the resistor connecting a pair of
sites, is given by the Miller-Abrahams expression. '2

Again, we obtain the percolation solution to this
random-resistor network. "

In the presence of the orbital effect alone, the auto-
correlation function C(j, LLH) has a peak at ( =0 (see
Fig. 3), but there are not any systematic shifts in the
spectrum of resistance fluctuations. The average value
of lnR decreases slightly with the initial increase in H,
and then it saturates at larger values of H. The per-
sistence of negative magnetoresistance into the local-
ized regime has been discussed by Lee and Fisher. '3

The relative magnitude of the fluctuations is insensi-
tive to changes in magnetic field and the average value
of resistance continues to exhibit Mott's T '/ behav-
10r.
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Let us turn to the experimental implications of our
results. Orbital and Zeeman effects can be experimen-
tally separated by the orientation of the magnetic field:
If the field is parallel to the sample, we predict that the
fluctuations in conductance arise because of hopping
from either (a) singly occupied sites to unoccupied
sites, or (b) doubly occupied sites to singly occupied
sites. With an increase in magnetic field, the fluctua-
tions associated with weak links of type (a) shift to
lower while those corresponding to process (b) shift to
higher gate voltages. If the magnetic field is perpen-
dicular to the sample, both the orbital effect and the
Zeeman shift influence conductance fluctuations. But
systematic shifts in the conductance-fluctuation spec-
trum can be solely attributed to Zeeman shifts of occu-
pied sites.

The present model does not entirely cover the situa-
tion in MOSFET's. The assumption of a step-function
density of states makes hops from singly and doubly
occupied sites equally probable, thereby causing the
correlation function C(g, hH) to be symmetric in f
The experimental situation is expected to be somewhat
different because the tail in the density of states will

lead to unequal hopping probabilities for processes (1)
and (4) and make C asymmetric. Clearly, magneto-
conductance measurements in ultranarrow MOSFET's
can provide the relative populations of singly and dou-
bly occupied sites near g and ( —U, respectively. To
obtain the value of U, one needs additional informa-
tion on the populations of singly and doubly occupied
sites, e.g. , from the measurement of density of
states. "

In conclusion, we have discussed the effect of mag-
netic field on conductance fluctuations in the
variable-range hopping model for finite 1D systems.
Our results will be applicable to measurements of mag-
netoconductance in 1D MOSFET's. ' We suggest that
the experiments should be analyzed in terms of the au-
tocorrelation function C, since it can directly differen-
tiate between orbital and Zeeman effects as well as re-
veal the hopping process and the nature of localized
sites. Systematics of magnetoconductance fluctuations
combined with density-of-states measurements will be
able to provide the intrasite Coulomb repulsion in 1D
MOSFET's.
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