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High-quality polarized-emission cross

sections for

the {als=|/=1,M))— {a}; and

{a}s— {4 transitions in the {a}={(2p)3(3p)} multiplet (lifetime 20 ns) have been measured
in a crossed-beam experiment. For the {a}s— [« }; transition we observe a strong preference for
the |M;| =0 orientation. The small cross section for the |M;|=1 orientation can be understood
qualitatively from the model potentials of Hennecart and Masnou-Seeuws by the strong coupling to
the {a}4 and {a}¢ states (avoided crossings), which is absent for the Q = | M;| =0~ molecular po-
tentials because of the constraint of reflection symmetry.

PACS numbers: 31.50.+w, 34.50.Pi, 34.50.Rk

Inelastic collisions of atoms in short-lived, electroni-
cally excited states presently are in the focus of atten-
tion of both theorists!™ and experimentalists.>-!! A
recent review of the field has been given by Hertel.!?
The dependence of the outcome of the collision pro-
cess on the initial orientation of the electronic angular
momentum with respect to the initial relative velocity
of the collision partners has proven to reveal many in-
teresting features of the potential surfaces and col-
lision dynamics.>%7 So far, most experiments have

Ne** [{(2p)5(3p) }x;/i] + He— Ne**[{(2p)°(3p) };3/;] + He + A Ey

involving beams that are well characterized with
respect to direction, velocity, and excited-state polari-
zation. Strong, interesting polarization effects have
been detected and absolute values of cross sections
have been determined with a high accuracy of 25%.

Typical lifetimes of the {a}, = {(2p)3(3p) ], states,
with k running from 1 to 10 with decreasing energy,
are 7 =20 ns. The total energy spread of the multiplet
is AE| =584 meV. Although a large number,
zgll(Jk +1) =23, of molecular states is involved,
which complicates the analysis of the observed transi-
tions, this system has two major advantages. First, the
process of intramultiplet mixing has been investigated
in detail in the afterglow of gas discharges, resuiting in
a suitable set of reference rate constants for Ne and He
as collision partners.!l'16-18 Second, model potentials
are available for the Ne**-He system, allowing a direct
comparison of theory and experiment by means of full
quantum-mechanical coupled-channels calculations.

A schematic view of the crossed-beam apparatus is
given in Fig. 1. The short-lived Ne**({a },;J,) atoms
are produced by laser excitation of one of the meta-
stable Ne*[{(2p)3(3s) }] states. The primary beam of
metastable atoms originates in a discharge-excited su-
personic expansion. Downstream of the skimmer all
charged particles are removed by condenser plates. A
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been performed in bulk. Only recently have crossed-
beam experiments with a much better defined initial
relative velocity been reported,6'7 resulting in more re-
liable results on these polarization effects. Until now,
the rather simple one-electron alkali-metal*% 13-15 and
two-electron alkaline-earth® =% systems have received
most attention.

In this paper we report the first crossed-beam study
of inelastic, fine-structure—changing collisions for the
system

(1

r
laser beam from a cw single-mode dye laser crosses the

primary beam at a point 90 mm downstream of the
source. This crossing point is located near the focus of

FIG. 1. Schematic view of the experimental setup. (1)
primary-beam source; (2) skimmer; (3) beam collimators, 1
mm i.d.; (4) parabolic mirror; (5) secondary beam; (6) laser
beam; (7) primary beam; (8) cutoff and interference filters;
(9) lens; (10) photomultiplier in cooled housing.

1577



VOLUME 57, NUMBER 13

PHYSICAL REVIEW LETTERS

29 SEPTEMBER 1986

a parabolic mirror. A skimmerless supersonic expan-
sion, with a typical nozzle-to-primary beam distance
z,=2 mm, provides a high-density secondary beam.
The parabolic mirror focuses a large fraction (40%
solid-angle efficiency) of the fluorescence radiation
into a nearly parallel beam. Narrow-band interference
filters (2 nm FWHM, 10 nm at 10~ ¢ transmission) are
used to select a single line of either the direct fluores-
cence from the initial state k or the collision-induced
fluorescence from the final state /. These signals yield
the number of atoms in the k and / states, respectively.
Additional suppression of background light is achieved
by the use of cutoff filters. The transmitted photons
are focused on the 9-mm cathode of an S20 photomul-
tiplier in a cooled housing. When we are measuring
direct fluorescence radiation, gray filters are added to
the optical system in order to guarantee a linear
response of the photomultiplier.

The detection efficiency of the optical system is typi-
cally 10~ per photon (A=650 nm) produced in the
scattering volume. With primary- and secondary-beam
densities of the order of n;=10" m~3 and n,=5
%x 102 m~3, the overall figure of merit in the thermal
energy range is about 2 kHz/A? for the number of
counts per unit of inelastic total cross section. The
background counting rate ranges from 2 to 15 kHz and
is mainly due to the line emission from the discharge
in the primary-beam source.

In this Letter we report the polarization and energy
dependence of the inelastic total cross section Q7.
for the collision-induced transition Ne**({a}s;J5=1)
— Ne**({a}7;J7=1), with He as the collision partner.
Using a linearly polarized laser beam and with the me-
tastable Ne*[{(2p)°(3s)};J =0] state as lower level
we excite the | {a}s;Jm;) g=|{a}s;1 0) g magnetic sub-
state, with the electric field vector E as quantization
axis at an angle 8 with the relative velocity vector g.
Scattering theory then predicts for the observed polar-
ized cross section Q#_ s (E)

0F_ s (E)=0J% s (E)cos?’B+ QL s (E)sin?B,
)

with Q7|¥.’ |5 (E) the polarized-emission cross section
for a well defined initial asymptotic quantum number
|M,|; with respect to the relative velocity, i.e., the
asymptotic 1 value.

In Fig. 2 we show the experimental results Q£_  for
the {a}s— {a}; transition with AEs ;=280.7 meV, at
a center-of-mass energy £ =100 meV. The measure-
ments have been performed by variation of the angle ¢
between the primary-beam velocity v, and E, yielding
extrema at angles 6 =6, and § = 6y + /2. By consider-
ing the Newton diagram of the collision process and
taking into account that extrema occur at 8=0 and
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FIG. 2. Experimental results for the observed polarized-
emission cross section Qf_ s as a function of the angle g
between the electric field E of the laser and the relative velo-
city g, at a center-of-mass energy E = 100 meV. The statisti-
cal error is less than the size of the data points. The solid
line is a curve fit according to Eq. (2). The dashed line is
the prediction of the model potential of Hennecart and
Masnou-Seeuws.

B=m/2, we can determine which of these extrema in
@ corresponds to Ell g, i.e., 0= 0, and B= 0. From the
orientation @, of the relative velocity vector in the lab-
oratory system, the absolute value of the relative velo-
city and thus the collision energy may be readily calcu-
lated, with the well known values of the laboratory
velocities v; and v, as input. Together with the
nozzle-to-primary beam distance z,, the angle =6,
also yields the effective position of the collision
volume on the primary-beam axis. This information
may then be used to determine the secondary-beam
density and the acceptance of the optical system. At
present we estimate the overall accuracy of the result-
ing absolute cross sections at 25%.

In Fig. 3 we show the observed energy dependence
of the polarized-emission cross sections Q7?_5 and
QJ}‘_ s- The datum point at energy £ =165 meV has
been obtained with a 90% He/10% Ne seeded primary
beam. The He* metastable atoms are converted with
approximately 50% efficiency into Ne* atoms by the
He*-Ne excitation-transfer reactions. The other data
points have been measured by variation of the position
of the laser beam along the primary-beam axis, which
results in different center-of-mass energies. We ob-
serve a good agreement between the two experimental
methods. Errors in the energy are typically 5%, due
both to the uncertainty and spread of the measured
(Ne*) or calculated (He) velocity distributions of the
colliding atoms, and to the uncertainty of the angle 6,.

To obtain insight into the mechanisms underlying
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FIG. 3. Ener%y dependence of the polarized-emission
cross sections Qﬂl.s and Q7|1|_5, with E the center-of-mass
energy. The full points have been obtained by varying the
magnitude of the primary-beam velocity v;; the open points
by varying the direction of v, by scanning the laser beam
along the primary-beam axis. The solid lines indicate the

. . M,
functional behavior Q;s ~ EV2.

the surprisingly large polarization effects, we have to
consider the salient features of the adiabatic potential
curves involved, as calculated by Hennecart and
Masnou-Seeuws" !' with a model potential method.
We first discuss the {a}s— {a}; transition. Both the
initial and the final states show only a small splitting
between the () =0 and ) =1 molecular potentials. To
indicate the range of internuclear distances R that is
probed, at £ =100 meV the classical turning point for
both Q potentials of the {a}s state is R,=6a, for an
impact parameter b =0 and R,=7.1a, for b=6a,.
For Q =0 the adiabatic electronic states are divided
into 0% and 0~ classes, depending on the reflection
symmetry. The Q =07 class contains the {a}; 579,10
states and there is a strong coupling of the {a}s and
{a}; states. This coupling can be identified as an
avoided crossing at R.=7.0a, with a Landau-Ze-
ner—type coupling matrix element Hs;=22 meV
(equal to half of the smallest separation of the poten-
tial curves), which is very large in comparison with the
energy difference AEs;=80.7 meV of the {«a}s and
{a}; states at infinity. For Q =1 there is no sym-
metry constraint and the intermediate {a )¢ state dis-
turbs the coupling of the {« }s with the {« }; state. We
now observe an avoided crossing of the {a}¢ and {a}4
states at R.=7.5a, with Hg=3.5 meV. Moreover,
the initial {a }s state is now coupled to the {a}, state
by an avoided crossing with H4s=1.0 meV at R,
=8.5ay. The small contribution of the { =1 orienta-
tion to the {a}s— {a}; transition is due to the strong
coupling of both the initial and final states to the {a},
and {a )¢ states, respectively, which is absent for the
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FIG. 4. Experimental results for the observed cross sec-
tion Qf_ 5 at E =100 meV (the solid line indicates the aver-
age value), in comparison with the predictions of the model
potentials of Hennecart and Masnou-Seeuws (dashed line).
The data points have not been corrected for the nonisotropic
distribution of collision-induced fluorescence radiation.

Q =0" adiabatic potentials. The large coupling matrix
element Hs; for Q =07 is consonant with a main con-
tribution to the cross section from small impact param-
eters, where radial velocities are large. Even without
“‘locking’’ of the initial ) = | M;| orientation to the in-
ternuclear axis, this orientation will then be largely
conserved at the crossing radius. This results in the
large polarization effect Q7|(.’|_ s >> 05l

The picture that thus emerges is confirmed by the
{a}s— {a}s transition, for which the results are
shown in Fig. 4. We note the absence of a significant
polarization effect. This is in apparent contradiction
with the simultaneous presence of an avoided crossing
of the {a}s and {a ]}, states for the Q =1 orientation,
and the absence of any coupling at all for ) =0 where
initial and final states are in different symmetry
classes. However, because of the small splitting of the
{a}s state between the (1 =0 and Q =1 adiabatic po-
tentials, the ‘‘locking’’ of the initial orientation to the
internuclear axis constitutes only a minor effect. The
asymptotic |M,|=0 orientation will thus be partially
rotated at the crossing radius into a local =1 state,
which does couple with the final {«}, state. This ef-
fect will be most pronounced for large impact parame-
ters. Because of the very small coupling matrix ele-
ment H,s, which requires small values of the radial
velocity for optimum coupling, we indeed expect a
predominant contribution from impact parameters
b= R.. Hence, the absence of a polarization effect,

4“1‘_ 5 = Qw_ 5, is qualitatively understood.

The total inelastic cross sections for the {aly4
— {a}s transition, as measured by Hennecart'! in a
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gas discharge, show a temperature dependence that is
in agreement with a curve-crossing mechanism. This
is supported by his calculation of the matrix elements
of the radial coupling operator 8/8R, which shows a lo-
calized coupling at R = 8.5a,,

We have also performed a fully quantum-mechan-
ical coupled-channels calculation using a diabatic basis
[{a) g3/ QmPMp), where the basis vectors have a
well defined parity 7, well defined quantum numbers
P and Mp for the total angular momentum in the
space-fixed frame, and well defined quantum numbers
J and Q=|M,|, for the total electronic angular

momentum in the body fixed frame, with z' along the
internuclear axis. On this basis we have a maximum
of 18 coupled equations for each value of P and
7= t1, because depending on parity the =0~ or
07 class is absent. We limit the calculation to P values
corresponding to impact parameters b = PX =< 15a,,
with X the de Broglie wavelength in the incoming
channel. For an energy £ = 100 meV this comes down
to P < 100.

The results of these calculations are given in Figs. 2
and 4. Because the model potentials of Hennecart and
Masnou-Seeuws,!"!! which have been used as input,
are available only for R =4.5a,, a hard-sphere core
has been added. However, this does not influence the
results. We observe that theoretical predictions for
both transitions are in fair agreement with the meas-
urements.

In conclusion, we can state that the model potentials
of Hennecart and Masnou-Seeuws provide a sufficient
basis for both a simple qualitative description and a
quantitative coupled-channels calculation.

The localized radial couplings in the {a )4, 5 ¢ 7 group
and the absence of ‘‘locking’’ phenomena open up the
prospect of a semiclassical description in terms of the
Landau-Zener formalism for avoided crossings and a
simple geometrical interpretation of rotational cou-
pling. Future measurements of the energy depen-
dence of all transitions in this group of four levels will
have to show whether this is possible. The available
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center-of-mass energies are 0.1 eV=F =<5 eV, where
a hollow-cathode arc!® will be used for the high energy
range.
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