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Time Ordering and the Thermodynamics of Strange Sets: Theory and Experimental Tests
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From the spectrum of dimensions of a fractal invariant measure of a dynamical system one can
extract information about the dynamical process that gave rise to the measure. This is equivalent to
finding the class of Hamiltonians of an Ising model with a given thermodynamics.
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Fractal measures appear in a number of nonlinear
physical phenomena like turbulence, ' 3 chaotic dy-

namical systems, ' and fractal growth processes. s

Such measures cannot be fully characterized by the
fractal dimension of their support; rather, an infinity
of generalized dimensions is called for their descrip-
tion. 6 8 Recently this spectrum of dimensions was

linked (via Legendre transforms) to the spectrum of
scaling indices of the fractal measures. 7 9

The fractal measures that arise in dynamical systems
have the particular character that they result from a
time-ordered process, be it an iteration scheme or a
continuous flow. '0 The resulting measures are, how-

ever, invariant to the dynamics and hence become
"static" objects. Describing these invariant measures
by their generalized dimensions (or spectra of scaling
indices) appears, therefore, to lead to a complete loss
of the dynamic information. In a sense that will be
made sharper below, this description is "thermo-
dynamic. " The aim of this Letter is to demonstrate
that this conclusion is in fact incorrect. ~ith some of
the provisos that are explained irI the sequel, the pro-
cess can be inverted, and the dynamical process that is
responsible for the construction of the measure can be
read from the thermodynamics. In this sense we claim
that the information stored in the generalized dimen-
sions (or spectra of scaling indices) is larger than what
could be naively anticipated.

The key idea that allows such an inversion rests on
the thermodynamic formalism" '4 of dynamical sys-
tems that maps the process of refinement of the fractal
measure (in time!) to a transfer matrix theory'3'4 of
an appropriate Ising model. To see this analogy we be-
gin with a partition of the set into N distinct pieces of
diameters (I;It~ i. Denoting the measure of each
piece by p, , we consider the partition function

W pC
I (q, i)= g

It was argued in Ref. 7 that upon refinement of the
partition, i.e., when max!i Q, I (q, 7') tends to infini-
ty for r & ~(q) and to zero for 7 ( r(q). The quantity
7 (q) = (q —1)Dq, where Dq are the generalized
dimensions, defined first by Renyi's and considered
first in the context of strange attractors in Ref. 6. A
convenient way of calculating 7(q) is therefore to fix
I'(q, 7 ) to a number as the p"-rtition is refined. For ex-
ample, we can take

(2)

For the purpose of the present argument we consider
special partitions such that pt=eonst. If the number
of boxes of the partition is denoted N„ in the nth gen-
eration of refinement, then p; = N„'. Inserting this in
Eq. (2) we get

Nq(~) g ~I(n)
~

—~ (3)
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where now the function q(r) rather than r(q) is em-

ployed. Typically, the number N„grows exponentially
with n. %riting

g/l (4)

we perform now one step of the refinement of the set
and consider

~q(r) g )
I(n+1)

(

—r
8+ q(g) I (5)

IV@( ) y [
I(~) i—

The result of this argument will be that

a'r" =X(r)

is an eigenvalue of a transfer matrix. '3'4 To show this
we point out that whenever a ~ 2 we can write the in-
dex I of I,

'" as ~„, . . . , eo, where ~1 takes on binary
values 0 or 1. For 2» a ~ 3 we need et that takes on
ternary values 0, 1, 2, etc. We thus rewrite Eq. (5) as

4++ )p e ~ ~ )40 4+@ ~ ~ ~ ~ fo

Next we define the daughter-to-mother ratio, also known as the scaling function, '6 by

I(~ +i ~ ~o)

I( gp y oj

Substitution in Eq. (7) leads to

S,o '(e„~,, . . . , eo)jl(»„', . . . , eI, eo)l '=Z(r) g ~I(e„, . . . , e )o~

+ ]p ~ ~ ~ pLO ~n «0
I

pg
J ~ ~ ~

where upon substitution we also added summations on eI, . . . , ~„' which were immediately compensated by the
Kronecker 5's. We therefore conclude that by defining a transfer matrix T,

+t ~ o)5+1''''' l~~ ''''' 1' 0~ ~n'n

we obtain the result that A. (r ) is an eigenvalue of T.

It should be clear by now how the problem maps
onto an Ising model. The number of spin states
depends on ~ being binary, ternary, quaternary, etc.
The range of interaction depends on how far back the
memory goes in determining daughter-to-mother ra-
tios. If we can truncate ~„, . . . , eo after, say, e„
then we have r nearest-neighbor interactions. In that
case A. (r) becomes the largest eigenvalue of T, be-
cause (9) can be iterated.

In general, sets arising in dynamical systems might
or might not have long-range interactions. We know
however that in sets that belong to the borderline of
chaos the memory usually falls off exponentially. We
therefore limit ourselves to such sets, and ask if we
can find the dynamics from the information about gen-
eralized dimensions D~, spectra of scaling indices
f(n), etc.7 9 In other words, given q(7), can we find
the winding number, the type of dynamical system
(quadratic maximum, cubic inflection point, etc.), and
the elements of the scaling function? We shall see
that the first two questions are answered positively in
full and the last one in part.

To focus the ideas let us examine two cases of sets
that have binary e. The first is the 2 cycle at the ac-
cumulation point of period doubling, and the second is
the critical orbit with irrational winding number
wG=1.618. . . (the golden mean), at the point of
breakdown of a two-torus. For the 2 cycle, a = 2 and

(10)

the binary tree is complete. Therefore all the elements
of the transfer matrix are nonzero. For the golden-
mean cycle, a = wG (asymptotically) and the tree can-
not be complete. Therefore there must be zero ele-
ments in T. To see which are the zero elements we
use the fact that for these sets at the onset of chaos the
orbits are time ordered exactly such as to match the e
ordering of the partitions. If we expand the time in Fi-
bonacci numbers F„, F„+t= F„+F„&, Fo= Ft =I,
i.e. ,

~oo ~oi

(rto 0 (12)

~hereas the period-doubling case has a nonzero o.~~.
In a similar way, if we consider period tripling versus,
say, a critical orbit with silver-mean winding number,
ws = I+&2, we deal with cases that have ternary e's.
For the period-tripling case, a = 3 and the ternary tree
is complete. For silver-mean trajectories neither con-
secutive 2's nor the combinations . . . , e, , 1, 2,

we discover immediately that adjacent 1's are not al-
lowed since they cause overflow of the time axis.
Thus o.(1,1), for example, must be zero. According-
ly, the lowest-order nontrivial approximation of the
transfer matrix reads
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~J, . . . are allowed, and so on.
A strategy for the extraction of dynamic information

therefore suggests itself. Given q(~) we begin by at-
tempting to fit an equation a~ ' =A. (r), where A. (r)
is calculated from a 2x 2 matrix. Writing the general
characteristic polynomial

)i'(r) —)t(r) (rrpp'+ rrtt')

+(~op~») ' —(~ot~to) '=o.

1=) (-D,). (14)

This can be used in Eq. (13) to eliminate one of the
three scales, leaving (6) as an equation with three un-
knowns, i.e., two scales and the number a. We solved
such equations by a multidimensional Newton-
Raphson technique, that proved to be rapidly conver-
gent.

To demonstrate how the procedure works we chose
not to employ theoretical data that are perfectly accu-
rate, but rather use experimental data that are subject
to some uncertainty. As case models we chose the
data pertaining to a golden-mean orbit and to the
period-doubling scenario in a forced Rayleigh-Benard
experiment using mercury as the fluid. ' The experi-
ment and its results were reported elsewhere, 9's and
here we summarize in Table I the q(~) values that
were obtained from the experimental orbits [we have
mainly used positive values of q which typically lead to
smaller uncertainties in r(q)].

Picking any three values of v from the data we can
solve Eqs. (6), (13) (with Do= I), and (14) numeri-
cally. Table II shows typical results. For the golden-
mean data the use of any three values of r that are
reasonably accurate leads to a very rapid convergence
to o.» =0 and the number a being very close to the
golden mean. Taking this as a strong indication that

(13)

we see that opt and o.to appear only as a product, '3 and
thus X(r) depends on three scales, ~rpp= st, tr» = s2,
rrtQO Q't $3 ~ We can further use our knowledge of
q(r), and in particular the knowledge of Do (which is
the fractal dimension) in Eq. (6), which for q=0
reads

TABLE I. The experimentally obtained numbers r(q)
from a forced Rayleigh-Benard system (Refs. 9 and 18).

0.3
0.6
0.9
1.2
1.5
1.8
2.1

2.4
2.7

—0.3
—0.6
—1.8

Golden mean
r(q)

—0.686
—0.384
—0.093

0.182
0.445
0.696
0.935
1.162
1.377

-1.339
-1.696
-3.276

1.3
1.6
1.9
2.2
2.5
2.8
3.1

3.4
3.7
4.0
4.3
4.6
4.9
5.2

Period doubling
7(q)

0.1557
0.3072
0.4563
0.6036
0.7515
0.8964
1.0416
1.1856
1 ~ 3257
1.464
1.5972
1.728
1.8486
1.9614

we have indeed a golden-mean orbit, we can now sub-
stantiate this by going to the next order where the
transfer matrix reads

1 't

~QQO ~ppl

(2)
~&oo

trpto 0

stol
0 0 0

(15)

A calculation shows that there are only two indepen-
dent scales in (15). Assuming then that a =1.618, we
can use essentially any two entries from Table I to
solve for these scales. We get a wonderful fit with
oooo=0.44+0.03 and ~rppptrptptrtpt =0.26 +0.03. We
consider this excellent support of the ideas presented
here.

The period-doubling data yield similarly satisfactory
results. Here we use the experimental value of
Do = 0.54 [i.e., I = & ( —Do = —0.54) ], and sol~e Eq.
(6) in the lowest-order nontrivial case of a 2x2
transfer matrix. Typical results are summarized in

TABLE II. Typical results of the inversion of the data in Table I. Other values of r(q) give similar results.

Values of q

Golden mean
2&2 matrix

~00

Golden mean Period doubling
4&4 matrix 2x2 matrix

Values of q n-000 o-oooa-0~0+. ioi Values of q a

0.3, 0.6,0.9
0.3, 0.9,1.2
0.3, 0.9,1 ~ 5
0.6, 0.9,1.2
0.9, 2.1,2.4
0.3, —0.3,—0.6

1.618 0.467
1.619 0.469
1.619 0.469
1.619 0.471
1.607 0.344
1.652 0.457

—1.1x10 "
3.8 & 10
3.7x10 "
1.3~10 "
1.1x 10-"
5.8~10 '

0.3,0.6
0.9,1.2
1.2, 1.5
1.5,2. 1

—0.3,—0.6
—0.6,-1.8

0.456
0.468
0.450
0.441
0.425
0.419

0.261
0.227
0.252
0.269
0.255
0.259

1.3, 1.6, 1.6
1.3, 2.8,4.9
1.3, 1.9,5.2
1.6, 2.2,4.9
1.9, 2.2,4.9
1.9, 2.5,4.3

2.003 0.441
1.999 0.379
2.002 0.405
2.000 0.409
1.998 0.400
1.992 0.391

0.194
0.176
0.174
0.180
0.179
0.186
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Table II. Notice that a=2 and no element of T is
zero. The only dynamics at the borderline of chaos
consistent with this is that of an infinitely doubled or-
bit.

Notice that we get good information about the
underlying dynamical system as well; in the case of
period doubling the scales obtained are a number and
its square. This indicates a map with a quadratic max-
imum. In the golden-mean case we get from the fit to
the matrix (15) values for a.

ppp and for a'pppirpipo ipi.
Comparing si=oppp to s2=a'pipoipi we fmd si=s23/2

This is consistent with 0'pip 0 ipi ~ ' and
o.ppp=n 3 (a=1.2558. . . is a universal number' )
which is a strong indication for a map with a cubic in-
flection polilt.

If the data were not consistent with winding number
«2, a fit to a 2x 2 matrix would have failed. In that
case one should try a fit to a ternary tree. Then the
lowest-order nontrivial matrix is of size 3x 3. Similar
constraints on X ( —Dp) can be used to reduce the
number of free parameters. Obviously if no good fit is
obtained with ternary trees, one can seek solutions
with quaternary trees, etc. , but the number of free
scales increases and numerical convergence becomes a
tedious affair.

In summary„we show that much of the dynamical
information can be retrieved from data which appear
"static. " In some sense this is like retrieving whole
potatoes from mashed potatoes. 2' We can get the
winding number, and the nature of the underlying
dynamical system. We cannot retrieve the full scaling
functions. There are scales that always appear in prod-
ucts and in this sense there is degeneracy in the "ther-
modynamic" description. '3 We can find, however, to
what class the scaling function belongs, and this ap-
pears sufficient to pinpoint the dynamics (at least in
the class of dynamics at the borderline of chaos).

It is our feeling that the mapping onto transfer ma-
trix language is extremely useful for the study of
strange sets, and attempts to generalize it off the bor-
derline of chaos will be reported elsewhere.
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