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Motion of Extreme Reissner-Nordstrom Black Holes in the Low-Velocity Limit
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%e show that in the low-velocity limit extreme Reissner-Nordstrom black holes describe approxi-
mate geodesic motion on a 3N-dimensional parameter space. %e discuss the metric and the
motions in the limits that one hole is much smaller than the others and also where the holes are
well separated. %e also consider the quantum mechanics of these solutions.
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The solutions (for fixed masses M„) are specified by a

point (xi, x2, . . . , xiv) in the parameter or moduli
space Xtt, which in this case is (R3)~. It is also known
that if a charged black hole, whether or not it is ex-
treme, is subjected to an external Melvin-type electric
field4 then the hole will undergo uniform accelera-
tion. s In addition, D'Eath has studied the approximate
motion of neutral black holes using a matched asymp-
totic expansion.

Macroscopic charged black holes probably do not ex-
ist in nature. However, in grand unified theories
(GUT's), one finds magnetic monopoles with typical
masses —4n g 2M~ and typical radii —Mg '. The
ratio of radius to Schwarzschild radius is thus—(MgK) 2g~. For large enough MgK and small
enough g, gravitational corrections will be large and,
provided 4mg 2M~ & 2mg 'E ', GUT monopoles
could have undergone gravitational collapse to black-
hole monopoles described by the Reissner-Nordstrom
geometry. By duality invariance these will interact
with themselves exactly as the electrically charged
holes me shall discuss in this paper.

In this Letter we wish to apply a technique which
has recently been applied to a number of soiiton sys-

Despite its great interest, comparatively little is
known about the motion of black holes. There are
some results on the static forces between black holes
indicating that only if the masses M„and g„are relat-
ed by the extremity condition

M„= Q„/K,

where K2=4m G, is equilibrium possible. ' The result-
ing multi-black-hole solutions are the Papapetrou-
Majumdar metrics2 whose geometry was discussed by
Hartle and Hawking. 3 The metric is (for N black
holes)

tems in the low-velocity limit. ' 9 The basic idea is that
if the motion is slow there will be negligible radiation
so the system will move quasistatically through a se-
quence of static configurations: That is, it pursues a
path in the moduli space. Radiation reaction forces
scale as odd powers of a characteristic velocity, u3 in
the case of electromagnetism and us for gravity. In the
low-velocity limit these may be neglected in compar-
ison with the velocity-dependent forces due to retard-
ed interactions which scale as v2. This is characteristic
of geodesic motion. Thus in our case we seek a metric
G on (R3)~ whose geodesics give the low-velocity
motion of extreme Reissner-Nordstrom black holes.

An alternative viewpoint is to regard Einstein-
Maxwell theory as an infinite-dimensional dynamical
system'0 with total energy given by the Arnowitt-
Deser-Misner" mass M The static solutions (2) cor-
respond to a 3N-dimensional submanifold Xh of the
configuration space in which the potential energy func-
tional is constant. Now consider all configurations
which are asymptotically flat and regular outside N ap-
parent horizons carrying charge Q„. Earlier results'2'3
show that the total energy M attains its lower bound
on the submanifold Xiv consisting of static configura-
tion given by (2) and (3). If this system is given a
small amount ( (( Mc2) of kinetic energy, its subse-
quent motion must be confined to a small neighbor-
hood of Xtt by energy conservation (at least in the
classical case when quantum tunneling is not allowed).
Since the potential energy is constant along Xiv, the ef-
fective Lagrangean will be given by just the kinetic-
energy terms, which is to say that approximately it will

execute geodesic motion along Xiv. This approxima-
tion will get better and better as the characteristic velo-
city gets smaller and smaller.

A variety of methods have been used to evaluate
metrics on moduli spaces. In the present case they
would correspond to the following.

(1) One could consider solutions of the linearized
Einstein-Maxwell equations about a particular solution

p on Xtt which are independent of time ("zero
modes' ). These zero modes span the tangent space
7~(Xtt) to Xh at p Substitution of the perturbation
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m =U ++U,
dA. c K

where X is proper time along the world line and E is
the conserved energy, and where W satisfies (by virtue
of the relation m = q/K)

~~ W~'= U' +2~U'.
C2

A particle at rest has E=0 and one moving slowly has
E « mc2. If Uis not too large (i.e., the particle stays
away from the horizons), Eqs. (4)-(6) reduce to

m dx/dt = U iV' W, (7)

U-')V W)'=2m. (8)

into the Hamiltonian retaining only quadratic terms
gives the metric G. This has been done for Kaluza-
Klcin monopoles. 7

(2) One might substitute into the Hamiltonian an
Ansatz in which the parameters of the solution are al-

lowed to be time dependent and retain only terms
which are second order in the generalized velocities.
This has been done for CP' solitons. 8

(3) General considerations might give special
knowledge about G which would permit its evaluation.
This was possible in the case of Yang-Mills mono-
poles. '

At present none of these techniques appears to be
tractable in our case. However, some information may
be gained about the metric Gin certain asymptotic lim-

jts.
(I) One can consider the limit on which one of the

black holes is very much less massive than N others.
It is physically plausible that its motion will be given
by a four-dimensional world line in the metric (2)
satisfying the point-particle equations of motion with
mass m and charge q related by m=q/K. Using the
Hamilton-Jacobi method one gets the equations

m dx/dA, = U 2V'W,

Equations (7) and (8) are precisely the Hamilton-
Jacobi equations for nonrelativistic geodesic motion on
the three-manifold II—= Ri —[x„,n =1, . . . , N}

0 dx'dx'= mUidx20 (9)

One should think of II, in the limit as m 0, as a to-
tally geodesic submanifold of the (N+1)-particle
moduli space X~+i. The equation of motion coming
from (7) and (8) is

d( Uix) = —', x U2V'U. (10)

Equation (10) indicates that two extreme black holes
experience, at large distances, a Newtonian force F
(define by mx) given by

F= (3GMiM2/2c2r2) [2v(v r) —v r]
where v is their relative velocity. Equation (11) shows
that two extreme black holes moving radially experi-
ence a repulsive force at large distances. The general,
nonradial, motion is described below.

(2) Another way of obtaining information about the
behavior of the metric G at large separations is to imi-
tate Manton's calculation in the Yang-Mills case by
use of Lienard-Wiechert potentials. '4

The equations of motion for gravitating bodies has
received much study. Einstein, Infeld, and Hoffman'5
showed that one could obtain equations of motion in
terms of the asymptotic field, irrespective of its
source. In the lowest post-Newtonian approximation
in which radiation reaction forces and terms of higher
order in v~/c~ are neglected, one obtains a set of equa-
tions for the positions of the bodies depending on their
masses but no high multipole moments (see also Ed-
dington and Clark'6). The equations may be derived
from the Lorentz-Droste-Fichtenholz Lagrangean. 'i' s

An outline derivation is given by Landau and Lif-
schitz' (see their Eq. 106.17). A critical and historical
review has been given by Damour. 20 To include the
effect of electromagnetic forces we add to the Lor-
entz-Droste-Fichtenholz Lagrangean Darwin's terms
due to the electric charges (Ref. 19, Eq. 65.7) to get
for general M„and Q„

i f

n N
L= X —,'Mv21+ — +3 g ~ + X GMM

where r ~ is the distance between the ~h and ~h particles whose velocities are v and v„, respectively, and r. „ is
a unit vector in the direction joining m to n If the Bogomolnyi condition (1) holds, the static force vanishes. In
the slow-motion hmit we get c —~ but with GM„/c tending to a nonzero hmit (i.e., slow motion but strong grav-
ity). This gives the metric

n=N

X M, dx„'+ $ -2 " (dx —dx„)'.
N 1 pgQpg C NlN

(13)
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GM/C2 —ro

G~M '
rii+ Gm/c')' ' (14)

where the critical radius now depends on J2 through
the equation (which can easily be solved iteratively)

J2 Gm —f0C
(is)

2m2GM Gm+ roc2

GMf0=
2c

Equations (14) and (15) agree with the nonrelativistic
results given above in the limit ~= J c2/m2(GM)2

0. For nonvanishing values of ~ they give a larger
value for the critical radius.

If the black holes move so slowly that their de Brog-

If we restrict all the dx„'s in (13) except 1 to vanish
(i.e., we look at the metric induced on the submani-
fold II) the metric (13) agrees (up to a trivial factor)
with (9) at large distances. This confirms that the
black holes experience a velocity-dependent repulsion
at large distances.

It is interesting to note that metric (13) is asymptoti-
cally flat in those directions in which all r „~and
that it is Ricci flat in that limit. However, metric (9) is
not Ricci flat everywhere, which strongly suggests that
the exact metric on X~ is neither Ricci flat nor has a
vanishing Rieci scalar.

The metric (9) is complete and the holes could only
touch after an infinite time. However, the slow-motion
approximation will break down long before that hap-
pens. Some idea of the reliability of the slow-velocity
approximation can be obtained by comparison of the
motion of a small particle with m = q/~ given by Eqs.
(4) and (5) with that obtained from slow-velocity Eqs.
(7) and (8). For just one big black hole we have
central-force motion. We find that an infalling small
black hole with energy E ( sl2c4/27mG2M2, where J
is the angular momentum, will [according to Eqs. (7)
and (8)1 reach a minimum radius, which is always
greater than a critical radius equal to GM/2c2, and
bounces out again. If E & 2J2c4/27G2M2m it has no
turning point. According to the more accurate Eqs.
(4)-(6) this behavior is quantitatively correct but the
critical energy is

'Ir = —I'i (8,$)exp( —iEt)R (r),1
(16)

where

lie wavelengths are comparable with the horizon size
GM/c one should treat the motion quantum mechan-
ically. This may be done by the writing of a covariant
Schrodinger equation on the moduli space X~ by use
of the metric G. Such a Schrodinger equation might
contain a term proportional to the Ricci scalar of G,
which could arise from integrating over classical paths
on X~ and a potential term arising from quantum fluc-
tuations orthogonal to Xz. Some idea of the expected
quantum-mechanical behavior can be obtained by
neglect of these latter terms and equating the Hamil-
tonian to the covariant Laplacian on X~ (cf. the Yang-
Mills case2').

The quantum-mechanical treatment becomes espe-
cially interesting if the masses of all the black holes are
equal. This could happen, for instance, if one con-
sidered a theory in which charge was quantized. It
would also happen if one considered magnetically
charged black holes whose magnetic-monopole charge
obeyed the Dirac quantization condition. In either
case the classical black holes would be indistinguish-
able and the moduli space would now be (if we did not
allow the black holes to coalesce) X~ = [(R3)~
—b, „)/Sz where A„consists of those configurations
for which r „=0for some m& n and S~ is the permu-
tation group on N objects. The fundamental group
n i(X~) is now Sz. There are in principle two possible
quantizations, one in which Sz is represented on the
wave functions by +1 (i.e., the black holes are bo-
sons) or more speculatively that in which odd permu-
tations in Sz are represented by —1 and even permu-
tations act trivially (i.e., the black holes behave as fer-
mions).

If one black hole is very much smaller than N others
the corresponding Schrodinger equation will be the
nonrelativistic limit of the charged Klein-Gordon
equation on the Papapetrou-Majumdar background
produced by the N large black holes. To get some idea
of what is involved consider the N =1 case. Solutions
of the Klein-Gordon equation have the form

1 f

d'R+ 1+ GM E2+2E 1+ GM
dr2 c2 r C

, (r+ i)
r2

(17)

The quantum behavior is similar to the classical
behavior except that now quantum tunneling is al-
lowed so that even small holes with energy less than
the critical energy can fall into the big hole. If there
are two large holes the tunneling will be more compli-
cated and the possibility exists for tunneling from the
region near one horizon to that near another in a
manner which is reminiscent of tunneling in
molecules.

One of us (G.W.G.) would like to acknowledge dis-
cussion with Don Page and also Dieter Maison, to
whom the idea of using Papapetrou-Majumdar soiu-
tions to treat the motion of black holes perturbatively
has also occurred. 22 See also the suggestion of Israel
and Wilson.
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