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Previous work on bifurcations and chaos in ferromagnetic resonance has singled out only the
most unstable pair of spin waves for consideration, even though in general an entire manifold of
spin wave is elegible for instability. This serious defect is removed here, and, as the result, we are
able to calculate analytically the frequency of the limit cycle and its accompanying distinctive spatial
correlation patterns.

PACS numbers: 76.50.+g, 05.45.+b, 75.30.0s

The recent revival of experiments on, ' 3 and theory
of, '~ high-power ferromagnetic resonance has been
phrased in terms of some of the modern concepts of
nonlinear dynamics. ' So far the theoretical work has
been largely numerical and has concentrated on the
fate of a single spin-wave pair as the rf excitation is in-
creased beyond a certain threshold. s Well beyond that
threshold, limit cycles, chaos, windows, etc. were ob-
served both in the laboratoryi and also in computa-
tions. The latter have concentrated on an initially un-
stable spin-wave pair only.

However, as the signal increases beyond threshold,
an entire manifold of pairs enters the picture. In fact,
for parallel pumping as well as for the subsidiary reso-
nance, this is already the case at threshold. s 9

We begin by re-emphasizing the old observation of
Ref. 8 that nothing spectacular happens at, and some-
what above, threshold. This is easy to see for perpen-
dicular pumping of the main resonance. As the uni-
form precession angle increases towards threshold, the
thermally excited spin waves are less attenuated and

reach a higher level. This higher level feeds back into
the motion of the uniform mode as additional loss,
tending to reduce the precession angle. At threshold
the spin-wave level is very high but finite, and the pre-
cession angle tends to stick at its threshold value. This
situation continues even beyond threshold. Recently,
however, we found that eventually this steady state be-
comes unstable, undergoing a Hopf bifurcation. At
yet higher power levels, further bifurcations and even-
tually chaotic states occur. We show here that the first
Hopf bifurcation (which results in a limit cycle) sets
up a collective mode of the entire manifold of spin
waves degenerate with the uniform mode.

In Ref. 8, the steady state was considered classically,
at a finite temperature, and the spin-wave level,
though abnormally large, was still proportional to the
mean square thermal fiuctuation field. Actually it is
formally simpler to go to zero temperature, allowing
the zero-point motion to replace the thermal agitation.

Consider the Hamiltonian reduced to the uniform
mode and the degenerate spin-wave manifold:

H= tooap as+ tokbk bk+ kbk b kaoao+ to, eXp(itot) ao +C.C. ,
t

where ati and the bk are respectively the uniform-
precession and spin-wave amplitudes. to, and to are
the signal amplitude and frequency. too and tok are the
natural frequencies of the uniform mode and of the
spin waves, these two being equal in the case of the
main resonance instability. The equations of motion
RM

ttk= cosh(f k/2), ~k=sinh(fk/2)exp(2ipk),

cosh(ittk) = ivlk/&k,

sinh(iltk) exp(2tljbk) = pkAO /nk,

Bk = bk exp( —lalkt), Aa= Qoexp( —ttopt),

+k pkB kAO t IkBk—~

iAO= to, +kBkB A—k—ii ivloAo,

(2a)

(2b)

and

n„= (~,-p, lA, )').
In the vacuum state of the P's, the expectation values
of BkB k and Bk Bk are

where the vl's denote intrinsic damping constants. The
B's are subjected to the Bogoliubov transformation'0

Bk = ttkPk &kP k. B' t, = &g—P' k-~kPk.-- &BkB k&
= p.AO/2&k, --

&B'B ) = --,'+-,'(I-p, IAo'I/~, )-'.
(3a)

The last result shows that the magnon occupation
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IApl =
go+Xlp I'IApl'/2(g -p IA I')

(As a check, the same procedure was used for the sub-
sidiary resonance, and the result of Ref. 8 was ob-
tained, with the measure of zero-point fluctuation re-
placing the thermal field used there. ) As ~, is in-

number tends to peak sharply for the mode or modes
for which pklApl2 is close to Tik .But it does not be-
come infinite, as is seen by substitution of it in (2b),
which becomes an equation for the steady-state value
of IA, I:

creased beyond threshold, IApl is seen to stick near
the smallest value of pk/qk. This and the correspond-
ing distribution of magnon numbers (3a) is the only
stable fixed point of the system.

We now find that as ra, is further increased to a new
threshold ~,', a Hopf bifurcation occurs and a hmit cy-
cle is formed. That threshold is found by examining
the equations of motion of SBi,=B„—Bk and of
SAo=Ap —Ap, where the barred quantities are the
values at the above fixed point. A collective mode is
found with complex eigenvalue whose real part goes to
zero at co,'. The Iinearized equations for the incre-
ments aM

[(~+~,)' —p,'IApl'l '

SBk= ipkAp SB' „+2lp„A,B' kSAo nkSB—k, (5a)

SAo=i+kBkAo SB k+i+kB kAo SBk+i XpkBkB kSAp —gpSAp. (5b)

With the assumption that all increments vary like exp(A. r) with time, it is easily found that A. is given by the sec-
ular equation

(A. +v]o) I+2IApl2xpi2 1+ 1—pklAol'

1k

I I+4pk2IApl'[(Z+ v]„)'—p~lAol'] ' I. (6)
nk pk A—o'

It is seen that the spectrum of A. consists of a band of
"single particle" decay constants, very nearly equal to
—qi, +pklAol, and an isolated pair of complex conju-
gate roots whose equal real parts pass through zen
from below as pi, is increased through cut. The
remaining imaginary parts are + i A. ", where A.

"
is the

frequency of the resulting limit cycle. Taking real and
imaginary parts of the secular equation at this bifurca-
tion threshold, one obtains two equations for A. ".
When we bear in mind that IApl is close to (qk/
pk);„, these equations simplify to (from now on the k
dependence of g is ignored)

) "=2IAplzv)X+4nz/(IApl X/2n —I) (7a)

~"= 2IAol'~X —4~',

where

can be expressed through (4) as a function of I Apl and
~,. These equations are satisfied by only one value of
co„cu,/IAol =4q. The corresponding A. "=2W2q; typ-
ical damping constants of yttrium iron garnets are
from 0.1 to 5 G, so that the limit-cycle frequency
ranges from 200 kHz to 10 MHz.

Our theory thus furnishes a possible explanation, as
well as an analytic expression, for the auto-oscillation

frequency observed by several investigatorsz "'z and
hitherto calculated only by numerical simulations for a
single mode pair. Also, our theory is a viable alterna-
tive to somewhat ad hoc arguments concerning stand-
ing waves. 'z Furthermore, the observed temperature
dependence of the auto-oscillation frequency" is in
qualitative accord with our expression, if we bear in
mind the temperature dependence of g discussed by
Kasuya. '3

We first discuss the spatial pattern of excitation,
below the threshold for Hopf bifurcation, which may
be characterized by the correlation function of the
transverse magnetization:

c( ) = ( +(r+z) (r)), (8)
where

m+ = m„+im,

and the z axis is parallel to the dc field, so that

c(z) = XIBkl'exp(u ).
(For simphcity we separately work out correlation
along and perpendicular to the dc field. ) Since the
Hamiltonian we have used is restricted to the subman-
ifold ~q=rup (although this is not necessary'~), we
only sum over k's meeting this restriction and multiply
the integral by a width 5 over which the integral is
large. Thus

c(z) = 47))r k dk sin~d8 exp(ikzco+)5(a)ir ~o)/(9 pglApl ).
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pg,
= (~,„Pk' —W,m~+ ~~ cos'e„)/2

4&M 1 ls the lattice spacing, ~., is the exchange field, and N, is demagnetizing factor For large z this in
tegral becomes

c(&)= F(~p, ai, I~pl')exp[ kipg(k p)z]/Wz+ 0(z-'~'- ), (10)

where g(k) is the value of cose on cubi,
= cup. The spatial oscillation frequency is

'l2 i12
+1

QP '0 P{)

IV gQl I 2 yo+ cgj

kp' calo

which simplifies to

~=
~ &kp/~

for oip ))N, co . The coefficient

b, kpq exp( —,
' im)

/ / /
Po 0 Po Po+ ~

kpg(kp) =
2 wp —Po '

,
yo+ m,

, m, yo+ ~m, , yo
i

ko is the stationary phase point of the integrand and yp= cup —N, co . The width LL is chosen such that the corre-
sponding frequency shift b, co is of the same order as q:

t' ' 1/2 2 ' ' 2 ' —1/2
1 ~m

-&0 + Xo
'

9 Cdp

turns out to be an extremely lengthy expression. In the same approximation, the correlation perpendicular to the
dc field is

5(,—o), e p[ k,g(k, ) ]c(x) =Ay„d3k exp(ikx sin& cos@)
2

= G(cuo, cu, l~ol2) + o(x-'-~),
n —p I&oI'

where g(kp) is the value of sin& on cubi,
= esp, and

kpg(kp)-

f
2

"
r )/2

l
yo+(pioyo) ]»i,—(cu'yp) ~' '

(~p2yp) '~'

~-p,,I~pl'[2/~kpe(kp) ]'/'{ f (kg(k) ]-I I-i~2 '

[k4(k)]'lg=g, =6[y —(co'y )'~']/kog(k )o)~, ko= l(I/~, „&')[—yp+(a'yp)'~'))'~'.

The correlation decays faster in the transverse than in the longitudinal direction.
At higher temperatures a finite thermal field replaces the effect of zero-point fluctuations. Then the spatial pat-

tern becomes the convolution of the exponentially decaying correlation function of the thermally excited
transverse magnetization (i.e., the Fourier transform of the magnon occupation number) and the low-temperature
correlation given above. Since the thermal correlation function is of very short range, the result is nearly the same
as at low temperatures. Turning now to the correlation pattern change induced by the Hopf bifurcation, we have

5c(r) = $(5B„B„+5B„B„')exp(ikr),

with 58„obtained from (5) to within a multiplicative constant:

Bg58i + Bi 58i = IBgl I58i )cos(pi + p + pb —p +A. r)

where vi, and v, are the phases of bi, and a, respectively. Since they are locked to each other through (3a), we can
choose ~, —i &„ to be zero:

~„=tan '[(A."2+2q2)/( —qA, ")] = ——,
' n,
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, '4~x, ~'q'P„/) "()"+4q') '

I+4~a, )'»„t'() '+4~')

1

1 Pk

~2 3Pk,„+Pk

ski&o~'
hc(r) = —d'kh(ro„—a)0), cos(t k

—', n—+242qt)exp(ik r).
aJ ~-Pk~&ol'

Since vk has a very small range of variation, from 0' to 2.5', one can apply the same calculation procedure as be-
fore. The final results of the change of correlation have the same form as those before the bifurcation except for
an additional factor Pk2, (Aq~3cos(vk, ——', ~+242qt) which shows that the correlation pattern formed after the

limit-cycle bifurcation is a standing wave at least approximately.
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