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The problem of dissipative superflow in the absence of normal-fluid friction is considered within
the hydrodynamic approximation. It is found that microscopic surface roughness gives rise to new
mechanisms of dissipative vortex motion and vortex regeneration, accounting not only for the criti-
cal velocities at which self-sustaining dissipation becomes possible, but also for the occurrence of

discrete dissipative events in oscillating flow.

PACS numbers: 67.40.Vs, 47.15.Ki, 67.40.Hf

Superfluid “He behaves as an irrotational ideal fluid
which may contain quantized vortex filaments. In ad-
dition, it supports a gas of elementary excitations (the
normal fluid) which can exert an external frictional
force on the fluid near the core of a quantized vortex.
This essentially hydrodynamical description of super-
fluid dynamics is valid down to a scale comparable to
the healing length of the superfluid wave function, a
distance which both theory and experiment suggest to
be on the order of a few angstroms.

Superflow characteristically becomes dissipative
above some critical velocity, apparently contradicting
the concept of ideal-fluid behavior. This is observed
even at low temperatures where the role of the normal
fluid becomes insignificant. The question addressed in
this paper is whether such a phenomenon can be un-
derstood strictly within the hydrodynamical context, or
whether it requires us to invoke some new mecha-
nism, such as the direct quantum-mechanical nu-
cleation of quantized vortices. Although this question
has been widely discussed since the early article of
Feynman,! the issue has remained unresolved, and in
fact no credible models have emerged on either side.
Recent developments once again compel us to face
this issue. On the one hand, a successful description
of dissipative superflow (superfluid turbulence) above
1 K has been developed within the hydrodynamical ap-
proximation.>”3 The normal-fluid frictional force plays
an important role in this model, and the question
arises whether the theory can sensibly be extended to
low temperatures where such forces disappear. On the
other hand, a recent remarkable paper* reports the ob-
servation of dissipation in oscillating flow through a
small orifice at very low temperatures. While dissipa-
tion in *He at low temperatures has been observed pre-
viously, these authors offer persuasive evidence that
in their experiment it occurs in the form of discrete,
more or less identical dissipative events, such as might
arise from the repetitive (but not necessarily periodic)
nucleation and growth of quantized vortices. Since the
dimensions of their orifice are still several orders of
magnitude larger than the healing length, it would
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seem natural to look first for a hydrodynamic explana-
tion. In what follows, I shall concentrate on the prob-
lem of dissipation in steady flow through an infinitely
long channel, which presumably corresponds to the
state of superfluid turbulence. The problem of oscil-
lating flow through an orifice is more complicated, and
at present only a qualitative discussion is possible.

As originally pointed out by Anderson,’ any
mechanism which causes vortices to move across the
flow direction is intrinsically dissipative. To under-
stand that this is a hydrodynamic effect, let us recall
that the equation of motion of a frictionless, in-
compressible, irrotational fluid has a first integral (the
Bernoulli equation)

pd®/dt+p+ +pvi=f(1), N

where p is the density, pis the pressure, and the velo-
city v is related to the velocity potential ® by v=V®.
The function f(¢) has no dynamical consequences and
can be set equal to zero. The energy flux in the fluid
has the form v(p+ $pv?), so that Eq. (1) relates
changes in @ to the energy flow. Consider a vortex
filament changing its configuration [Figs. 1(a) and
1(b)] while subjected to a fixed applied flow field v,.
As shown in Fig. 1(c), a surface S* can be drawn to
define a singly connected volume V* in which Eq. (1)
can be applied. Note that S* excludes the vortex core
and that it generates a local barrier B which makes ®
single valued, and across which @ is discontinuous by
the quantum of circulation k = 4/ m,. It then follows
directly® from Eq. (1) that if a vortex changes its con-
figuration by any process whatsoever, thus changing
the local barrier, a well-defined amount of energy

AE=—pkv, - Ade 2

flows into V™ through S; and S,, and out of V* into
that part of S* surrounding the barrier. Here the nor-
mal of dB is oriented toward the direction in which the
vortex carries fluid through the barrier. The energy
dissipated according to Eq. (2) must be provided by
the mechanism’ which is keeping the fluid moving. |
emphasize that there is nothing in the argument lead-
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FIG. 1. Dissipative vortex motion: (a) head-on view,
flow into figure; (b) side view, flow from left to right; (c)
construction for calculating energy flows.

ing to Eq. (2) to explain why dissipative vortex motion
actually occurs. This requires the addition of physical
processes going beyond the simple ideal-fluid picture.

The language of *He physics differs slightly from
that of fluid mechanics. Instead of ® one uses the
phase ¢ = my®/k. In addition, since the excitation gas
behaves as a separate hydrodynamic entity, only a part
of the fluid will act as an ideal irrotational fluid. This
results in the replacement of p by the superfluid densi-
ty ps and of p + +p,v2 by u/ my, where u is the chemi-
cal potential per superfluid atom. Evaluated between 2
and 1, Bernoulli’s equation in the rest frame of the
channel then takes the form

ﬁa(¢2—¢1)/at=—(ﬂz—ﬂl). A3)

which has the appearance of the Josephson frequency
relation. Considerable confusion has arisen from the
notion that, because it looks quantum mechanical, Eq.
(3) has a dynamical content beyond that contained in
Egs. (1) or (2). Certain disclaimers should therefore
be kept in mind. First, the validity of this equation as
applied to *He is not in need of experimental verifica-
tion, as claimed for instance in Ref. 4. It follows
directly from the well established dynamical properties
of the superfluid. Second, this ‘‘phase slippage’’ equa-
tion merely describes the energy flow which occurs
when vortices appear and grow. It does not provide
any information about how and why they do so, and
therefore again it does not explain why dissipative vor-
tex motion (i.e., phase slippage) actually takes place.
In particular, Eq. (3) does not imply that vortex-

mediated dissipation should be ‘‘quantized,’’ or that it
should involve some characteristic ‘‘Josephson fre-
quency.”’ Such effects would require an orifice on the
order of angstroms, several orders of magnitude small-
er than any which have yet been studied, and would
presumably involve a different kind of physics from
that which is relevant here.

The preceding discussion is meant to make it clear
that the central issue in understanding dissipative su-
perflow is to identify the mechanisms which cause
quantized vortices to appear and to move so as to dissi-
pate energy in the sense of Eq. (2). Until now, this
has been achieved only for situations in which the
normal-fluid friction plays an important role. The
motion of a quantized vortex filament is accurately ap-
proximated by?

§=Bs'xXs"+v;+as' X (v,—v,+Bs' xXs"), 4)
where s(£,t) describes the configuration of the fila-
ment, the primes denote the derivative with respect to
the arc length €, a is a known temperature-dependent
friction constant, v, and v, are the local average nor-
mal and superfluid velocity fields, and 8= («/4)
xIn(c;/s"”ag), with ¢; a constant of order 1 and
ap=10"8 cm the effective core radius of the filament.
Nonlocal vortex interactions are described by the state-
ment that at sufficiently close distances vortices will
reconnect to each other or to boundaries. Application
of these ideas to a vortex tangle in the situation where
a and v, — v, are large? leads to a self-sustaining dissi-
pative state in which the friction makes loops grow
outward so as to give AE >0 in Eq. (2), the loops
eventually annihilating at the boundaries, while the
supply of such loops is constantly regenerated through
the process of line-line reconnection.” Although very
successful in the regime to which it applies, this hydro-
dynamic model of dissipative superflow obviously fails
when a or v, — v, become small, since the mechanism
causing nonconservative loop growth no longer
operates.

The main result to be reported here is that when the
hydrodynamic formalism is extended to account for
the inevitable presence of microscopic surface irregu-
larities on the walls of the flow channel, a second set
of processes leading to nonconservative vortex motion
and vortex regeneration can be identified. These
processes do not involve the normal-fluid friction «
and therefore can give rise to self-sustaining dissipa-
tion in the zero-temperature limit, entirely within the
fluid-dynamical context. Recall that a vortex filament
terminating on a perfectly smooth surface will move
along the surface without hindrance. When the end of
the vortex encounters a bump, however, it will remain
pinned there until it bows over to within some critical
angle of the surface, at which point it will jump off and
resume its motion.! Quantized vortices in *He will pin
on bumps of only a few angstroms, so that in practice

1449



VOLUME 57, NUMBER 12

PHYSICAL REVIEW LETTERS

22 SEPTEMBER 1986

(a) (b)

FIG. 2. Zero-temperature mechanisms for (a) dissipation,
and (b) vortex regeneration.

this process is always expected to occur. Consider now
a vortex loop pinned as shown in Fig. 2(a). As the ap-
plied velocity v, (equal to v, in the present instance)
sweeps the loop downstream, the vortex spooling off
the pinning site, the tip will develop an increasingly
pronounced self-induced velocity §; as shown. The
resulting upward distortion then generates the self-
induced velocities $§;, which cause the loop to grow
across the flow field in a dissipative manner. Quantita-
tive numerical calculations [Fig. 3(a)] show that this is
not a particularly delicate process, efficient dissipative
motion developing whenever a vortex hangs up on a
pinning site.

It is not difficult to see that the flow energy is dissi-
pated by being fed into the growing vortex lines which
then annihilate at the walls, presumably degrading into
thermal excitations by some as yet not clearly under-
stood process. It is simpler and more illuminating
however to think about the momentum exchange
between the superfluid and its environment. External
forces such as mutual friction or pinning forces act on
the vortices which in turn move so as to pass this
momentum flux into the superfluid as a reaction force.
Thus, the presence of quantized vortices can act to
couple the superfluid to its environment in such a way
as to decelerate it. For example, it is clear in Fig. 2(a)
that the vortex is exerting a downstream force on the
boundary via its interaction with the pinning sites.
Conversely, the boundary must be exerting a retarding
force on the superfluid via its interaction with the vor-
tex flow field. The cross-stream motion developed by
the vortex is the mechanism through which this
momentum flux is passed out into the superfluid, thus
decelerating it. From a general point of view, the bro-
ken translational symmetry allows the surface to cou-
ple to the vortices, causing it to exert a retarding force
on the superfluid.

It should be noted that for a given driving velocity
there is a minimum radius of curvature or loop size
which can be involved in this growth mechanism.
Furthermore, when a given vortex grows across, as in
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FIG. 3. (a) Quantitative calculation of the dissipative
growth of a vortex across the channel. The vortex starts at
the lower left corner, and the driving velocity is into the fig-
ure. The pinning and release of the vortex as it moves down
the channel gives rise to the kinks propagating along the
vortex. (b) Snapshot of the self-sustaining dissipative state
close to v, showing that it consists primarily of isolated
loops growing across. The vortices in unit length of the
channel are projected onto a plane perpendicular to the flow
direction.

Fig. 3(a), it will eventually reconnect across the
corners, forming loops which apparently are oriented
in the wrong way to cause further dissipation. Hence
once again one must face the question of how new
macroscopic loops of the correct orientation and size to
serve as growth centers are created. The surprising
answer, discovered by direct numerical simulations, is
that a vortex driven into a corner as shown in Fig. 3(a)
will, under the combined effects of pinning and v,,
undergo a complicated further development which
results in its flipping over to form a small loop of the
correct orientation to act as a new growth loop, provid-
ed that v, is large enough. As illustrated in Fig. 2(b),
the applied velocity first distorts the line so as to gen-
erate a self-induced motion §; which brings the line to-
wards the bottom plane. The secondary velocity §,
which then develops rotates the plane of the vortex.
When it finally reconnects to the bottom plane, it
forms a loop oriented in the right direction to serve as
a growth center. Since a given loop will grow to impact
several corners, this unexpected regeneration effect
can cause the vortex population to increase from a sin-
gle initial pinned vortex. Thus, above a critical driving
velocity a steady dissipative state can be maintained in
which vortex loops grow by pinning and release, and
regenerate by reflecting back out of the corners that
they are driven into. The mechanisms which charac-
terize this zero-temperature dissipative flow state are
entirely different from those which are active in
normal-fluid—driven turbulence, but they too are a
straightforward consequence of classical vortex
dynamics.

Previously developed vortex-tangle codes,® modified
to include vortex pinning and release, have been used
to calculate the properties of the zero-temperature dis-
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sipative state. In the computations, a rough surface is
parametrized by the angle & (measured from the hor-
izontal) at which the vortex depins and the distance A
it then moves before reattachment. A typical snapshot
of the resulting state [Fig. 3(b)] shows that it differs
considerably from homogeneous, normal-fluid—driven
turbulence in its appearance.’> In an infinitely long
channel, this state cannot sustain itself below a critical
velocity given approximately by

v,=v2(0,\/D) (/47 D)In(c; D/ ay), (5)

where D is the channel size, and the dimensionless
velocity v} is a function of @ and A, as well as the
channel geometry. The dependence of v} on 8 and A
was found to be rather weak, the calculated values
varying from v} =25 when 8 =25° and A/D=0.13 to
vi=15 when 6=5° and A/D=0.03. These results
may be compared to the temperature-independent,
pure-superflow critical velocity measured by Baehr,
Opatowsky, and Tough!® in 1.34x10~2-cm-i.d. glass
channels. Their value of 1.5 cm/sec translates into
v} =18, in excellent agreement with the values calcu-
lated here from first principles. One may conclude
that the new fluid-dynamical mechanisms reported
here are not only of conceptual interest, but in fact al-
low us to calculate the properties of the zero-
temperature dissipative state to a reasonable approxi-
mation.

The zero-temperature dissipative mechanisms sup-
plement rather than replace those driven by the
normal-fluid friction. Thus, they are also expected to
be important at high temperatures, particularly when
v, — V, is small while v, and v, are large, a situation
for which the frictional term in Eq. (4) becomes rela-
tively unimportant. Preliminary calculations indicate
that at least some of the great complexities!! exhibited
by superfluid turbulence above 1 K arise precisely be-
cause there exist these two simultaneously operating
and interacting sets of processes. A great deal of fur-
ther work will clearly be required to sort out these
complications.

Finally, I note that the present findings provide a
natural explanation of the observations of Avenel and
Varoquaux,* entirely within the hydrodynamic con-
text. To see this, it is important to realize that the crit-
ical velocity (k/2wD)In(b/ay) for vortex depin-
ning'> 13 is about an order of magnitude smaller than
the critical velocity [Eq. (5)] for self-sustaining dissi-
pation. Below the depinning velocity, vortices pinned
in the corners cannot move and there is no dissipation.
Just above the depinning velocity, they can break free
and move across the orifice as in Fig. 3(a), but they
will now repin in the opposite corners rather than re-
generate to maintain a steady state. In an oscillating
flow, vortices will therefore move back and forth
across the orifice in discrete stages, dissipating approx-

imately the same amount of energy AE = p kv, A4 each
time, where A is the cross-sectional area of the orifice.
This is exactly the result reported in Ref. 4. While the
explanation given here is somewhat idealized, its plau-
sibility raises the exciting prospect that dissipative
dynamics at the individual-vortex level can be ex-
plored by comparing fluid-dynamical calculations with
experiments of the Avenel-Varoquaux type. On the
other hand, there appears to be no obvious justifica-
tion for thinking that some new quantum nucleation
process is at work here.

In conclusion, a consideration of microscopic sur-
face roughness has led to the discovery of new
mechanisms of dissipative vortex motion and vortex
regeneration in superfluid “He. These mechanisms do
not depend on normal-fluid friction and therefore
operate in the zero-temperature limit. In addition to
explaining the existence of self-sustaining dissipation
at low temperatures, they seem to account for the oc-
currence of discrete dissipative events in oscillating
flows, and for some of the complicated features of su-
perfluid turbulence at higher temperature.

Brewer'* has proposed an interesting alternative ex-
planation of the Avenel-Varoquaux observations,
based on the idea that their experiment contains an ad-
ditional flow path.
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