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Characterization of Chaos in a Hybrid Optically Bistable Device
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Dimension and correlation entropy are measured for various settings of our hybrid optically bi-
stable device. Measured dimension is found to be significantly less than dimensions consistent with
the Kaplan-Yorke conjecture. The standard method of determining correlation entropy is shown to

yield more than one value.
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Recently, a repertoire of tools for the recognition
and analysis of chaos has included various empirical
techniques for the estimation of dimension! of an at-
tractor and various entropies from a time series.
Current techniques involve (1) estimation of a dimen-
sion from the Kaplan-Yorke (KY) conjecture (limited
to theory?), (2) estimation of the dimension from an
embedding procedure (experiment® and theory*), (3)
estimation of a correlation entropy from the embed-
ding (mostly experimental®), and(4) estimation of the
trajectory  divergence directly (experiment® and
theory*). The techniques involving embeddings have
me;t with success in several cases of low dimensionali-
ty.
In this paper we experimentally verify the existence
of few-dimensional chaos in our device by using
embedding techniques and by directly measuring tra-
jectory divergences. We find that methods (1) and (2)
are inconsistent in this case, and method (3) gives
multivalued results whose meaning must be sorted out
through use of a modified version of (4). The KY
conjecture requires a dimensionality greater than two,
where two is the minimum number of nonnegative
Lyapunov exponents needed to describe chaos. We
find v < 2 over broad parameter ranges (v denotes our
measured dimensionality).

Our device is illustrated in Fig. 1. The beam from a
helium-neon laser passes through a modulator [polar-
izer and potassium dihydrogen phosphate (KDP) crys-
tal] and is coupled into an optical fiber. The light em-
erging from the fiber is detected with a photomulti-
plier, and an amplified electrical signal is applied to the
KDP crystal, thereby achieving delayed feedback. The
system is modeled by the differential delay equation®

rdX(0)/dt+ X (1)
=pum{l—¢€cos[X(t—t)+ Xgl}. (1)

Here X=—mV/V,, V is the voltage applied to the
modulator, V), is the half-wave voltage of the modula-
tor, and X, = Vy/V, is a variable bias which is set
equal to — /2. The quantity u is proportional to the
product of the input laser intensity and the total am-
plifier gain; u serves as the bifurcation parameter in
our experiment. The ability of the system to achieve
extinction is measured by £ =0.96 +0.01. We use two
values of fg/7: “‘fast” (fg/7=6%1) and “‘slow”
(tg/7=3 +0.5), where the relative terms ‘‘fast’ and
“‘slow’’ pertain to this experiment. The fiber delay
tg =6 pus sets the fundamental period (or periodic
component) equal to 2(#; +8) where 0 < 8 <17 and &
depends on . The device bifurcates to chaos through
a Feigenbaum period-doubling sequence that is trun-
cated by noise.’ The period-two, -four, and -eight
wave forms are denoted P,, P4, and Pg. In the chaotic
regime the periodic structure is lost in inverse order
with wave forms denoted Ng, N4, and N,. We study
only the inverse sequence since in this domain the
chaos is unique and well characterized.>1® Wave
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FIG. 1. Experimental layout: He-Ne laser; GP, Glan
prism, KDP, crystal; M, mirrors; PMT, photomultiplier; L,
lens.
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forms whose data appear here were chosen by opera-
tion at the low w end of the N, domain. This locates
the operating point more accurately than specification
of u, whose error is of the order of the N4 domain.

A transient digitizer measures the voltage V at the
amplification stage in intervals £, and stores it in the
form V,=V(y), t=it, i=1-26000. We construct
vectors Vg =(V (), V(g+mt), V(g+2mig), . ..,
V(t,+ mdt)), where d is the embedding dimension
and m is some integer. We show results for m =1 but
have obtained the same results for larger m. We calcu-
late correlation'! integrals C,(¢), i.e., the number of
pairs of vectors whose Euclidean separation
[ V4i— V| is less than the distance €. For a chaotic
signal

In[Cy(€) v Inle]l + K, ds;. (2)

We use the terms dimension (v) and correlation en-
tropy (K,) to describe our results whenever their use
is consistent with the data.

The embedding compares a set of M vectors against
a set of N, where we typically choose M= N =1200.
When we test M or N beyond this value (up to 3500)
we see little imporvement in the results because the
“‘signal to noise’’ properties of the embedding increase
logarithmically with M or N. Figure 2 (top) shows
embeddings of a ‘“‘slow” N, (left) and a ‘‘fast” N,
(right) wave form. log,C,(¢€) is plotted versus log,e
for d=1-6, 9, 12, 15, and 18. In the middle row of
Fig. 2 we show the slopes v, of C,(e) computed
between values of C,(e) indicated by the heavy arrows
on the right-hand borders of the top figures. The
slopes are computed by a regression analysis. The esti-
mates of the 2o points, shown as dots, suggest the
linearity of the correlation curves, but are unclear er-
ror estimates because the points in the embedding are
not statistically independent. We estimate our random
error by twenty independent embeddings, which yields
less than 5% variation in v (we do not know of defini-
tive work on systematic errors'?). Note that for d > 7
the slopes v, converge to a value v, our estimate of
the dimension, which supports the suggested rule!?
that dimension should be determined at a minimum
d=2v+1. Observe that v=1.6 in the left column,
and v =2.8 on the right. The “‘slow’ N, has v=1.9;
the ‘‘fast’” Ny hasv=1.8.

Vallée and Delisle!? have visualized this change in
dimensionality (from v < 2 to v > 2) in a device simi-
lar to ours using the Poincaré section!* which we ob-
tain by synchronizing z with 7z by means of a phase-
locking device. The Poincaré sections of the wave
forms are shown at the bottom of Fig. 2. The one to
the left is linelike, while the one to the right is consid-
erably broader, suggesting a filling out of the phase
space. The finite width of our section (left) is the
same as the scatter obtained from the section of a
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FIG. 2. Top: Correlation integrals, log,C,; vs logye, for
“slow> N, (left) and ‘‘fast N, (right). Plots for d=1-6,
9, 12, 15, 18 are shown. Slopes computed between heavy
arrows on right borders. Center: Slope v, obtained by a line
fit of each curve above. Dots indicate uncertainty in line fit.
N4 has v < 2. Bottom: Poincaré sections of N4 and N,.
Linelike (suggesting v <1) N, section on left; filled out
(v > 1) section on right. For simplicity, period is denoted
by 2t (see text).

periodic signal, indicating that the spread is due to syn-
chronization noise. This noise prevents us from ob-
taining good straight lines when we embed® the Poin-
caré section. The common noise factor indicates that
we can embed a section of a periodic signal to test for
the minimum € for which a dimension!’ of zero can be
observed. Within the specified range of €, we obtain a
dimension that is approximately v — 1 from the chaotic
traces. The values v —1 < 1 are close to the values ob-
tained when Eq. (1) is reduced to a one-dimensional
map whose iterates are tested by the embedding.
Figure 3 is a plot of the family of curves
[log,C4(€) —10gyCy41(€)1/ me; vs d for all € over the
same portion of the embedding shown in Fig. 1 that is
used to compute the dimension (=1 us, m=1,
d <20). A correlation entropy’ exists if for some
range of dand independent of e these curves converge
on a constant K.. To verify that we can resolve such a
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FIG. 3. Plot of family of curves [log;Cy(e)
—log;Cy+1(€) 1/ t; vs dfor all € over same portion of embed-
ding shown in Fig. 1 (=1 pus, d < 20).

constant, we test periodic and noisy signals and ob-
serve no convergence. As Fig. 3 shows, we find that
two convergences occur, one for 8 < d< 12 and
another for 14 < d < 20. We have observed (by vary-
ing m) the empirical relationship mt;Kdp,,=c. Here
K is some plateau, d,,, is the maximum d for which it
may be observed, and cis a constant for any one wave
form (varies between wave forms over a range
1 < ¢ < 2). Both plateaus in Fig. 3 vanish at their ap-
propriate d.,,. Neither convergence can be taken to
be more fundamental than the other.

To understand the origin of these plateaus, we es-
timate trajectory divergences.® We search the data
set for points near V¥, which generate a subset { V;}
such that for all j and for n=0,..., nm.y,
|V City+ nty) — V(jt,+ nt,) | < V. Here Vy is 0.4% of
the maximum voltage variation. As prohibitively few
such subsets occur in the asynchronous data, we use
the synchronous data which typically yields 100 such
subsets for n,,,=1. We then compute the standard
deviations o;(ut;), u=n—nm,=0, 1, ..., of the set
of voltages. If it exists, we estimate the ‘‘local trajec-
tory divergence’ rate ;¥ at r=it, as the exponential
rate of increase of o;(ut,) with t= ut,, We estimate
the trajectory divergence rate y* using the exponential
rate of increase of (o ,(ut,)); with t=ut, ({ ), signi-
fies average over i). For the data in Fig. 3, y* =04,
which agrees with the lower plateau (14 < d < 20) in
Fig. 3 and with the local divergence rates measured
here and earlier.!®

Because Cy(€) is unchanged if — — 1, we are
motivated to subject the data to time reversal and re-
peat the analysis described above, now looking for an
“‘effective average convergence.”” As above, we ex-
amine the way in which nearby trajectories (now time
reversed) depart from each other. Results from the
N, data are similar to results obtained when a map!’
derived from Eq. (1) (in the domain of N,; the logis-
tics map is similarly tested) is iterated to form a se-
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quence and then time reversed. The plot of log({a;);
vs tis linear for both cases, yielding an effective aver-
age trajectory convergence rate denoted y~. Both
¥~ ’s are about twice their respective y*’s. We fail to
obtain in either case a local convergence rate y;~ for
all but a negligible subset of i’s. Instead we typically
observe that o;(ut,) is a step function. For the data in
Fig. 3, ¥y~ =0.8, which agrees with the upper plateau
(8 < d< 12). The rates y* and y~ are indicated on
the ordinate of Fig. 3.

Since the map is chaotic and has one degree of free-
dom, we can be sure that its y~ is not associated with
a Lyapunov exponent. Our device is no different from
the map in its local convergence properties, and so we
suspect that v~ in our system is also not associated
with an exponent. Furthermore, the agreement
between y* and our lower plateau suggests that we
have only one positive Lyapunov exponent.!®* The
pointwise analysis thus allows us uniquely to associate
a Lyapunov exponent with the average divergence rate
and its corresponding value of the correlation entropy.
If chaos is a stationary process then the rate at which
trajectories leave a volume of phase space must be bal-
anced by a rate at which they are brought into the
volume. If the rate at which trajectories leave the
volume is determined by the Lyapunov exponents,
then the rate implied by y~, an object that is fabricat-
ed by the averaging, implies, in our system, an imbal-
ance of the rates of convergence and divergence. It
follows that the effective average convergence is not,
even on the average, the same kind of process as the
divergence.

In summary, we have explored various methods for
recognition and characterization of chaos. We have
found the embedding to be a powerful tool for estab-
lishing the qualitative claim that erraticism in our sys-
tem is due to deterministic rather than stochastic
processes.! We are unable to offer unqualified sup-
port for quantitative applications. We observe a
dimension qualitatively less than that of KY. Figure 4
of Ref. 1 indicates that such discrepancies are possible
mathematically. We believe that we are observing a
similar discrepancy in a real system. We see substan-
tial changes in measured dimension in the N, domains
without correlated changes in other properties of the
system. Other experimental'*?? and theoretical®!
groups have extensively studied the same (chaotic)
domains and fail to report any abrupt physical changes
associated with the transition in dimension from less
than two to greater than two. Especially in our slower
system, all the spectral properties and all of the rates
vary smoothly through this transition, offering indirect
support for the notion of an underlying dimensionality
that has physical significance but which might resist
measurement. We feel that it is premature to claim
that our value v > 2 measures this dimensionality. We
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obtain at least two values of the correlation entropy,
neither of which can be taken as correct on the basis of
inspection of the embedding alone. We have deter-
mined from trajectory divergence analyses that one
represents an average divergence rate and another an
effective average convergence rate. We have found
similar rates in mappings, verifying that there can be
more rates than Lyapunov exponents. The Lyapunov
exponents require averaging over the attractor in order
for them to be well-defined constants. When chaos is
investigated by examination of average properties of
the attractor, excess rates are fabricated by the averag-
ing. By investigating pointwise properties of the sys-
tem we can objectively identify which rates are
Lyapunov exponents and which are fabrications.
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