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Dimensionality of Strange Attractors Determined Analytically
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An analytical method to determine the dimensionality of strange attractors in two-dimensional
maps is introduced. In this method, the geometric structures of an attractor are obtained from a
procedure developed previously. Such structures often appear to be the Cartesian product of a
curve and a Cantor set. From the geometric structures, we determine the Hausdorff dimension
first for the Cantor set, and then for the attractor. The results compare well with numerical results
obtained for the Henon, Zaslavskii, and Kaplan-Yorke maps.

PACS numbers: 05.45+1, 02.50+s, 03.20+i, 05.40+j

Strange attractors, consisting of interweaving trajec-
tories, are found in many dissipative chaotic systems.
The typical geometry of a strange attractor is a set of
self-similar structures that repeat on finer and finer
scales. A strange attractor has a fractal dimensionality2
that can characterize certain phenomena among vari-
ous fields in physics such as fluid dynamics, 3 4

geophysics, chemical thermodynamics, medical phys-
ics, ~ etc. Several methods to determine the dimen-
sionality of strange attractors have been introduced.
The primitive box-counting algorithm has been found
impractical. s The Kaplan- Yorke conjecture, 9'0 though
intuitive, encounters difficulties in measuring the Lya-
punov exponent under some circumstances. " Most
other methods"'2 involve tedious bookkeeping of
data from simulations or experiments, such as a time
series or the distances between datum points. Howev-
er, I believe that the geometry of the attractor itself
plays a more basic role in determining the dimension.
In this Letter I present the first analytical method to
determine the (Hausdorff) dimension of a strange at-
tractor, simply by examining the geometric structures
of an attractor in a two-dimensional dissipative map. I
note that a strange attractor of a two-dimensional map
appears to be a Cantor one-manifold, i.e., the Carte-
sian product of a one-dimensional manifold and a
Cantor-setlike structure w'ith dimension o. between 0
and l. If we can find o by examining the cross sec-
tion, we can conclude that the attractor is of dimension
d= I+a.

Let us here consider a Cantor set constructed as fol-
lows: Define a closed interval Co, say [0,1), as genera-
tion zero; form set Ci (generation one) by erasing
k —1 open segments from the mother interval Co so
that k daughters (closed intervals) each of length e,
(i = 1, . . . , k) times the mother interval remain; form
set C2 (generation two) by repeating this process with
each of the k daughters, ad infinitum The set thus.
constructed is called a rescaling Cantor set, since each
daughter resembles its mother. From Farmer, Ott,

and Yorke' it follows that the dimension a- satisfies
k

g(o) = hei =l. (1)
]

We call g (o ) the fractal generator, which characterizes
the construction of a rescaling Cantor set.

It seems that it would be easier to determine the
capacity of a Cantor set, but instead we choose the
Hausdorff dimension for two reasons. First, the
capacity o = lim, —ologn(e)/~loge ~ seems easy to
evaluate only because n(e) has often been taken to be
the number of cells needed to cover the set at a certain
generation, as in the familiar case of the middle-third
Cantor set. However, in general, this formula is only
valid if n(e) represents the number of cells needed to
cover the Cantor set itself. For the asymmetric Cantor
set discussed by Farmer'4 as an example, the fractal
generator is ( —,') +(—,') . The capacity log3/log4
=0.7925 obtained in Ref. 14 is wrong, since it only
corresponds to a fractal generator 3( —,

' ) . The author
in Ref. 14 had assumed that n(4 ') =3'. In fact,
n( —,

' ) = 3, but n( —,', ) = 8&9. An expression for n (e)
is not trivial at all!' Equation (1), however, gives
o = log Q/log( —,

' ) =0.6942. Here 0 is the golden
mean. This value of ois much close-r to the informa-
tion dimension 0.6887 given by Farmer. '4 We see that
the Hausdorff dimension is easy to generalize to
nonuniform Cantor sets (i.e. , with unequal e, 's).

Second, capacity is not invariant under coordinate
changes. '6 Ott, Withers, and Yorke'6 suggested that
the word "dimension" be reserved only for those
quantities having this invariance property, such as the
Hausdorff dimension.

Generally, Eq. (1) cannot be solved in closed form.
The middle-third and the asymmetric Cantor sets
mentioned above are only exceptional cases. Howev-
er, we can use Newton's method. We choose an initial
guess o t l = 0 and then iterate

if'+'i = i~i —(g e "—1)/($, e; inc;).
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A four-significant-figure accuracy usually requires no
more than three or four iterations.

We have previously developed a procedure to deter-
mine analytically the equilibrium-invariant distribution
on strange attractors in two-dimensional dissipative
maps. ' ' Now we can examine the structure of an at-
tractor and compare its cross section with the Cantor
set mentioned above. I simplify the procedure and
describe it below.

Consider a dissipative map T that maps z to z',
where z= (x,y) are coordinates of the two-dimen-
sional plane (usually the angle-action variables of the
corresponding Hamiltonian system, if it exists). I first
choose a simple trapping region Co of the map, say the
smallest rectangular region such that z C Co implies
z'= T(z) 6 Co. To obtain the equilibrium invariant
distribution, I start with a generation-zero distribution

r

f (Q)( ), ) 0 z
=0, zf C.

Structures of a subsequent generation (n) are obtained
by applying T repeatedly (n times) on C. We can
write

f („)( ), ) 0, T "(z) E Co or z E C",
=0 T-"(z) f C' or z f C"

t

where C"= T"(C ). The equilibrium invariant distri-
bution is given by f ( ' and the attractor is given by
Cao

As an illustration, consider the dissipative standard
mapt~ 2o [y'= by+ ksin2mx, x'=x+y'(modl)] with
b=0.05 and k=1.5. An appropriate trapping region
for f (o) is ~y ~

«y = k/( I —6). Successive genera-
tions f ('), . . . ,f '4' are shown in Fig. 1. Observe that
each middle stripe among the seven bears a new gen-
eration of seven daughter stripes. The rescaling prop-
erty is apparent from the figure. Yet, it is a premature

conclusion that the cross section is of dimension o.

given by Eq. (1). To see the picture more clearly, de-
fine the set Hi (H„) to be the segment(s) near (0.5,0)
that C' ( C") intersects the x axis, and the set Vt (g )
to be the segments that C' intersects the vertical line
x =g. Notice that Hi has seven daughters (H2)
resembling Vi(0.5). The middle sister in H2 also has
seven daughters resembling Vi (0.5). However, each
of the other six sisters in H2 has five, six, or seven
daughters resembling Vt(g) with g (other than 0.5)
satisfying T2((, 0) C Hi. In fact, exactly seven points
on the x axis have images (under T2) in Hi. We ex-
pect that for large n, sisters (or cousins) in H„have
daughters resembling Vt(g) with ( distributed com-
pactly between 0 and 1. It is evident that the cross sec-
tion cannot be described by a rescaling Cantor set.
Nevertheless, I can model the cross section of an at-
tractor by interweaving offsprings, each characterized
by its own fractal generator.

Let us now consider a probabilistic Cantor set, con-
structed such that at generation infinity, the probabili-
ty that each mother interval bears daughters as pre-
scribed by the fractal generator gr ((T ) is p; (for
i = 1, 2, . . . , with g,p, = 1). I generalize Eq. (1) to
determine the dimension

g(o.)= X,p gr( r()7=1. (2)

I call g (cr ) the genealogy of the Cantor set.
We see that the probabilistic Cantor set describes

the cross section of the attractor quite well. We can
rewrite the genealogical equation (2) for the cross sec-
tion of the attractor as

p1
g (o.) =

J dago)(rr;(r') =1,

where the subscripts correspond to the generations in-
volved, and ( corresponds to the line x =(. A
random-phase assumption has allowed me to replace

"2
Gxl 0 3.6xl 0

c~

0-

-l.6:
0 0.5 0.5 0.5 0.5

' X

FIG. 1. Structures of the attractor ana1ytically obtained for the dissipative standard map ~ith b = 0.05 and k = 1.5: C in the
region 0«x «1, ~y~ «1.6; O', C, and C in regions (0.5,0) + (10,10 '), + (6X10 x, 6x10 4), and + (3.6x10
3.6 x 10 ). White region represents f = 0 while black region represents f ) 0. Note the resemblance of the last three.
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gb, p by Jd(. The integrand can be found from
(segment [ —y,y]) and the corresponding V, (g).

I have chosen ( in the integral to be the abscissa
variable. Different choices of coordinates g may lead
to different genealogies. The best coordinate g should
be chosen such that a curve of constant g represents
points that are squeezed together upon application of
the map. However, the solution o of Eq. (3) has a
rather insensitive dependence on the choice of coordi-
nate g. Since the shrinking of a map is typically dom-
inant along the ordinate axis, 2' choosing ( to be the
abscissa variable gives a reasonably accurate dimension
as shown below.

For tlM Henon map (x =y+1 —m'2, y = bx)
with a =1.4 and b =0.3, I choose the trapping region
C to be the quadrilateral with vertices at ( —1.33,0

.42), (1.32, 0.133), (1.2525, -0.1127), and
( —1.087, —0.408). Transforming Co into a rectangle
and solving Eq. (3) [by first dividing the rectangle into
a 100X100 grid and counting consecutive black cells
(i.e., cells in C') on each column to obtain the geneal-
ogy numerically], I obtain a =0.258 + 0.005.

For the Zaslavskii map20

x'= [x+v(1+ p,y) + esp, cos2n x](modl),
y'= exp( —I ) (y+ ~ cos2irx),

where p, = [1—exp( —I )]/I", with I =3.0, a=0.3,
and i =102X —,', the trapping region C is lyl ~y=&/
(expI' —1)=0.0157. The first-order structures C' of
the attractor are shown in Fig. 2. Consider vertical
lines at intervals of 0.1. Vo is [ —y,y]; Vi consists of
about fifty segments. If we divide the segment Vo into
15000 cells, we find that for the fractal generator of
each x (x =0,0.1,0.2, . . . , 0.9), Eq. (1) has a solution
of o between 0.5595 and 0.5625. Noting that the vari-
ation in a is so small with respect to x, it is safe to
divide the trapping region into a 10X15000 grid, and
conclude that the solution to Eq. (3) is o-=0.561
+0.0015.

For the Kaplan-Yorke map9 [x'=2x(modl), y'=uy
+cos4nx], with a=0.2, I have Vo= [ —y,y], y

Y

0
I

0.5
i X

I

FIG. 2. First-order structures C' of the attractor for the
Zaslavskii map with I" = 3, e = 0.3, and v = 10 x T.

1

or any x, Vi consists of two segments each f
ength 0.5. Although the two segments overlap in C',

O

we are interested mainly in the fractal generators at
generation infinity, where the region of overlapping
(in C ) has measure zero. Hence, we can solve
Eq. (1) exactly and find o. to be log( —,

' )/
log(0. 5/2. 5) = 0.430 676 6.

n able I, I summarize the results from the above
method and from previous calculations. ' ~" The
second column displays the values of d analytically
determined as above, the third column shows values
obtained from box-counting algorithms ' and th
ourth column from the Kaplan-Yorke conjecture. ' lt

is evident that the values of d determined analytically
agree with those calculated with other methods. The
calculation of dimensionality by use of the analytical
method presented here is much faster than the other

TABLE I. Summary of results.

Map tested

Henon map,
a =1.4, b =0.3

Zaslavskii map,
I =3, &=0.3,
v=10 XT

Kaplan- Yorke map,
o, =0.2

d determined
analyt&cally

1.258+ 0.005

1.561+0.0015

d from box
counting'

1.261+ 0.003

1.4316 + 0.0016

d from Lyapunov
num bersb

1.264 + 0.002

1.55 + 0.0005'

1.430676 6

'Reference 10.
b Reference 11.
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methods. As an example, to calculate the value of d
for the Henon attractor, according to Russell, Hanson,
and Ott, ' it took 5 min on the Cray computer using a
box-counting algorithm, and 0.3 min using the Kap-
lan-Yorke conjecture. It takes only less than 0.02 min
to determine d analytically by sol~ing Eq. (3) numeri-
cally.

My results demonstrate that the genealogical equa-
tion (3) provides a simple, fast, and accurate analytical
method for determining the dimensionality of strange
attractors. The error bars in the second column of
Table I are subjective estimations based on variation of
grids. A more detailed analysis will be included in an
expanded article in preparation. 23
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