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Every closed three-manifold occurs as a spacelike hypersurface of a vacuum space-time. For
most of these three-manifolds, however, the vacuum space-times that contain them have no maxi-
mal slice. For asymptotically flat manifolds there are no restrictions on which three-manifolds can
occur obeying the local energy conditions p & (J,J')'i2, and the space-times that contain them in
most cases have no maximal slice.

PACS numbers: 04.20.Fy, 02.40.+m, 04.20.Jb

The existence of maximal slices for physically rea-
sonable space-times has been an outstanding problem
in general relativity. Only partial results on existence
have been proven to date. '2 In particular, space-times
sufficiently near to Minkowski space admit maximal
slices. On the other hand, Brill3 4 gives examples of
some spatially closed space-times and an asymptotical-
ly flat space-time that admits no maximal slices.

A less known problem is whether every three-
manifold has physically reasonable initial data. Schoen
and Yau5 appear to claim that for asymptotically flat
three-manifolds this is false, i.e., that if an asymptoti-
cally flat three-manifold has positive energy, then its
compactification is the connected sum of three-
manifolds with finite fundamental group and handles.
As they note in a subsequent paper, however, the ini-
tial data in their classification were assumed to have no
apparent horizons. 6 Hence, the problem of which
three-manifolds can occur remains open. If the re-
striction on horizons is removed, Brill's example of an
asymptotically flat space-time with no maximal slice
shows that the class of allowed three-manifolds can be
broadened, because the initial data for his example are
on a three-torus minus a point. However, the dust
source in the Brill example is not differentiable every-
where, and one might worry that in smoothing it one
would be forced by the constraint equations to violate
the local energy condition.

In what follows, it will be shown there are no re-
strictions on which closed or asymptotically flat three-
manifolds have physically reasonable initial data. 7 In
particular, every closed three-manifold has vacuum in-
itial data. As a by-product of this work, it follows that
most space-times with sources that obey the dominant
energy condition never admit maximal slices. More-
over, this result is independent of the explicit form of
the sources, and depends only on the topology of the
space-t. Ie.

An initial data set in general relativity consists of a
three-manifold X, Riemannian metric g,a, symmetric
tensor p,b (which will be the extrinsic curvature of X
in the space-time R x X evolved from the data), ener-

gy density p, and momentum density J' which satisfy
the constraints

R —p,bp'b+ p2= 16m p,

D (p' —pg' ) = Sm J'
Here R is the scalar curvature of gab, Da is the covari-
ant derivative defined by g,b, and p =—p, '. Initial data
are called physically reasonable if they are smooth
(C ), X is geodesically complete with respect to g,b,
and the sources obey the local energy condition
p~ (J,J')'i2. From here on, initial data will always
refer to physically reasonable data. When the energy
and momentum densities correspond to classical non-
dissipative matter sources, or vacuum p= J'=0, the
coupled Einstein-matter equations can be used to
evolve the initial data into a space-time'8 RxX.
Moreover, X is a spacelike hypersurface in the evolved
space-time, and the constraint equations and local en-
ergy condition are the orthogonal and parallel projec-
tions of the field equations and the dominant energy
condition, 9 respectively.

It will now be shown that every nonnegative smooth
function on a closed three-manifold is the energy den-
sity of an initial data set with l'=0, and in particular
that every closed three-manifold has vacuum initial
data. Let X be a closed three-manifold and p~0 a
smooth function on it. Since p is smooth and X
closed, p attains a maximum on X denoted by po. Let
f= 16~p —6Ati where —6AO —= 16m po+e and e is any
positive number. The function fis strictly negative on
X. Now the following result of Kazdan and Warner'o
is applied: Given any closed manifold M"n ~3 and
smooth function which is negative somewhere on M",
there exists a Riemannian metric with the prescribed
function as its scalar curvature.

Choose g~ on X such that its scalar curvature is f.
Next take p,a=Hog@ where Ao= [(16m pa+a)/6]'i2.
It follows immediately that g,b, p,b, p, and J'=0 are
initial data on X. Moreover, if p is taken to be the
proper energy density of dust, " then the initial data
can be evolved into a space-time R x X with X a space-
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like hypersurface. In particular, when p=0, X is a
spacelike hypersurface of a vacuum space-time.

Examples are the closed hyperbolic spaces. A hy-
perbolic space is obtained from R with the metric
g = dr2/(1+ k r ) + r2 d 02 (in spherical coordinates)
by identifying points of R3 via isometrics of the
metric. The scalar curvature of these spaces is
R = —6k2. A specific example is the hyperbolic
dodecahedron space obtained from a solid dode-
cahedron by identifying opposite faces after a counter-
clockwise rotation of 3m/5 radians. One choice of ini-
tial data on these spaces is g,b with R= —6k,
p,b=Ag, i„J'=0, and p=(3/8m)(42 —k2). If p is
taken to be the proper energy density of dust, then the
time evolution of the initial data is a Robertson-
Walker space-time of negative spatial curvature.

The technique just applied to close three-manifolds
is not a viable approach at the present time for X
asymptotically flat for two reasons: The ability to
prescribe scalar curvature with a complete metric is an
open problem, and if p,b is proportional to g,b it will
not approach zero at infinity. The procedure for
asymptotically flat manifolds will be to satisfy the con-
straints on a closed manifold, then to remove a ball
and smoothly glue to it a spacelike hypersurface of the
Schwarzschild space-time.

The gluing procedure will be used to prove the fol-
lowing theorem, which is an existence theorem for
asymptotically flat initial data on manifolds admitting a
special type of metric.

Theorem. —Let S be a closed three-manifold with in-
itial data. Suppose that in a neighborhood of some
point io of S the initial data satisfy the following condi-
tions: The metric g,b is spherically symmetric with
scalar curvature R = —6k, p,b

= Ag, b, J'= 0, and
p = (3/8m ) (4 —k ) . Then S —

( io } has asymptotical-
ly flat initial data.

Examples of closed three-manifolds with initial data
satisfying the conditions of the above theorem are the
closed hyperbolic and flat spaces. The standard metric
on one of these spaces is spherically symmetric in
some neighborhood of every point, and its scalar cur-
vature is —6k everywhere. Hence, initial data satis-
fying the conditions are the standard metric g,b, p, i,= Ag,i„J'=0, and p = (3/8m) (A2 —k2). In particu-
lar, it follows that the three-torus T3 minus a point has
asymptotically flat initial data.

Now, the theorem will be proved. Local spherical
symmetry about io implies that the metric near io can
be written in the form g = g dr + r d0, where g is a
function of only r and r ( r2 (r2 fixed). Geodesic
completeness and R = —6k imply g = (1+k r )
Next, this metric coefficient is matched to the t=0
spacelike hypersurface of the Schwarzschild space-
time. Choose any ro and ri such that r2 & ri & ro
& (A2 —k2)ri3. Let q be any smooth monotonically

decreasing function with g = 0 for r2 ) r ~ ri and
q = 1 for r ~ ro .Now, make the following choices for
r2 & r ~ ro.'

2M(r)
v) + (1 —q) (1+k r )

g2 k2
p = (3/8~) (4' —k') (I —~),

M(r) = Mi — 4mpr2 dr~r
For r ( ro, take g,b to be the metric of the t =0 space-
like hypersurface of the maximally extended
Schwarzschild space-time of mass M(ro). All the
above functions are smooth, because they are con-
structed from integrals, products, and sums of smooth
functions. Now, p,b will be determined. Let p,b be
given by p=n dr2+Pr2dQ where n and P are func-
tions of r. Integrating the constraint equations from r
to ri with J'=0 and the above choices of g and p
yields

' —[I —2M(r )//r }

and n = ((/3'r+P). These expressions are smooth for
r2) r ~ ro by construction. When r ( ro take p,b for
the Schwarzschild hypersurface. This completes the
proof of the theorem.

It will now be shown that every closed three-
manifold S has initial data satisfying the hypothesis of
the above theorem. Let S be any closed three-
manifold with metric g,b. Take a small enough neigh-
borhood W of a point io of S such that W is dif-
feomorphic to the interior of a ball Bof radius r3 via a
diffeomorphism Q:W B. Let ii,b be the complete
spherically symmetric metric of constant scalar curva-
ture —6k on B and g,biz the restriction of g,b to
WcS. Choose a smooth monotonically decreasing
function q with g =0 for r3 & r & r2 and q = 1 for
r2) ri & r. Let g,i, be the metric on B defined by
gee= (1 n—)A 'g.b—l~+q/i. , where P 'g.i, l~ is the
pullback of g@l~ onto B. Finally, take g,b on S to be
g,b on S —Wand Qg, i, on W Then g,b is a spherically
symmetric metric of constant scalar curvature —6k2 in
a neighborhood of io

Let R be the scalar curvature of g,b on S. Because R
is smooth and S closed, R attains a minimum on S
denoted by Ro. Let p=—(R+642)/16m. where 6A2
=—

I ROI + ~, & & 0. Since p ~ 0, the choice 1'=0
means that the local energy condition is satisfied.
Now, take g,b, p,b=Ag, b, J'=0, and p= (R+6A )/
16m as initial data on S. Applying the theorem in a
neighborhood of io, it follows that S—

( lo} has asyfilp-
totically flat initial data.

It was just shown that S —(a point} has asymptotical-
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ly flat initial data for every closed three-manifold S.
Since every geodesically complete three-manifold with
a single asymptotic region arises from the removal of a
point from a closed three-manifold, it follows that
there are no restrictions on which asymptotically flat
three-manifold have initial data. Moreover, if p is tak-
en to be the proper energy density of dust, then the in-
itial data can be evolved into a space-time. Hence
every asymptotically fiat three-manifold is a spacelike
hypersurface of a space-time with sources that obey
the dominant energy condition.

Now, look at maximal slices for space-times R x X
with X closed or asymptotically flat, and sources that
obey the dominant energy condition. Suppose that the
space-time has a maximal slice, that is, a spacelike hy-
persurface diffeomorphic to X with p=0. Then the
constraints must be satisfied on X with p=0, and the
dominant energy condition implies p «(J,J') '/2.

Constraint equation (1) combined with p=0 and
p«0 imply R «0. Hence X admits a metric with
R «0. If X is asymptotically flat, then there is a
closed three-manifold Ssuch that S minus a point is X.
Moreover, one can prove if X has a metric with R «0,
then Sadmits one with R & 0.'2 Thus, the question of
necessary conditions for existence of maximal slices is
reduced to asking which closed three-manifolds have
metrics with R & 0 or R «0. Gromov and Lawson'3
proved the following: Any closed oriented three-
manifold X (or its double cover if nonorientable)
which has a K(m, 1) '¹as prime factor in its prime
decomposition admits no metric with R & 0. In fact,
any metric on X with R «0 is flat. Because most
prime closed three-manifolds are K(m, 1)'s and only
ten of these are flat, it follows that most closed three-
manifolds never admit metrics with R «0. Therefore,
most closed or asymptotically flat three-manifolds X
never have a metric with R «0. Since a necessary
condition for maximal slice in R x X is that X admits a
metric with R «0, and all X occur, it follows that
most space-times R x X with X closed or asymptotical-
ly flat and sources obeying the dominant energy never
admit a maximal slice. '6

The surprising feature of the counterexamples
presented here is that they are independent of the ex-
plicit form of the sources. Furthermore, the weak
condition for existence of maximal slices in asymptoti-
cally flat space-times given by Bartnick2 never can be
satisfied on most space-times.

The results presented here for three-manifolds with
a single asymptotic region are easily extended to mani-
folds with any finite number of asymptotic regions by
repeating the gluing procedure at a finite number of
points of a closed three-manifold. For closed n-
manifolds in (n+1)-dimensional gravity the con-
straint equations are the same as (I) and (2). They
can be satisfied by a change of the proportionality con-

stant Ao to (16mpo+e)/(n2 —n)]'/ . The maximal-
slice results also carry over to higher dimensions.
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I5The connected sum of two three-manifolds M~ and M2 is

the three-manifold M~NM2 obtained from removing the in-

terior of a ball from each, and then gluing the resulting man-
ifolds together along their boundaries. A three-manifold M
is prime if M=M~NM2 implies that MI or M2 is a three-
sphere. Every closed orientable three-manifold M has a

unique prime decomposition M=4I"=~M; ~here each M; is
pf1me.

'6The proof of this result used only the ~eak energy condi-
tion, T p

W' lP «0 for all H 8' (0. Therefore, this
result extends to the larger class of space-times obeying the
~eak energy condition.
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