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The Gutzwiller Approximation as a Saddle Point
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%e propose a new functional integral representation of the Hubbard and Anderson models of lat-
tice fermions. The simplest saddle-point approximation leads, at zero temperature, to the results
derived from the Gutzwiller variational wave function. This approach uncovers the limitations of
the Gutzwiller approximation and clarifies its connection to the "auxiliary-boson" mean-field
theory of the Anderson model. This formulation leads to a novel strong-coupling mean-field
theory which allows for a unified treatment of antiferromagnetism and ferromagnetism, metal-to-
insulator transition, and Kondo compensation effects.
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Recently there has been an upsurge of interest in

strongly correlated Fermi systems, mainly triggered by
the remarkable properties of the ne~ly discovered
"heavy-electron" materials. ' Interest in the problem
was also stimulated by speculations concerning the in-

terplay between disorder and correlation effects near
the metal-to-insulator transition in doped semiconduc-
tors. 2 A theoretical understanding of these systems is
still lacking and further progress appears to require
new techniques, outside the scope of conventional
weak-coupling approximations.

Apart from Monte Carlo simulations, 3 two analytical
approaches to strongly correlated fermions have re-
ceived a great deal of attention: the Gutzwiller varia-
tional approach, which originated in the context of the
Hubbard model, 4 and the so-called "slave-boson" or
auxiliary-boson formulation first proposed by Barnes5

and rediscovered and extended by Coleman6 and Read
and Newns7 in their work on the mixed-valence prob-
lem. The first is an appealing but uncontrolled ap-
proximation scheme for calculating the ground-state
energy of a variational trial wave function. The second
has so far been mainly used to treat the infinite-UAn-
derson model and consists of replacing the infinite
correlations by a local constraint which is then handled
by standard field-theoretical methods (see, however,
Ref. 5). In this Letter we present a new functional in-
tegral formulation which (i) extends the collective bo-

son approach to any value of the correlation8; (ii)
reproduces for the first time the results of the
Gutzwiller approach in a saddle-point approximation,
and thus uncovers the limitations of the Gutzwiller ap-
proximation and suggests, at least in principle, sys-
tematic ways of improving it; and (iii) allows for a uni-
fied treatment of ferromagnetism, antiferromagne-
tism, and metal-insulator transitions in a mean-field
theory which in the weak-coupling case agrees with

Hartree-Fock theory while for strong coupling incor-
porates the qualitative physics expected from the few
available exact results. (iv) In the Anderson model

(2a)

(2b)

the resulting saddle point builds in the collective
quenching of the local moments (Kondo effect) and
will ultimately allow us to study the competition
between the Kondo effect and magnetic order. To our
knowledge this is the first method by which such a
large number of phenomena become easily accessible
within the same framework.

Qualitatively our approach is based on the idea that,
in a strongly correlated system, in the process of hop-
ping the electron is accompanied by a "backflow" of
spin and density excitations of the medium. (In a
quasiparticle picture this shows up as a renormalization
of the hopping amplitude and simply leads to a change
of the effective mass. ) Formally, this qualitative idea
can be realized by rewriting the original Hamiltonian in
terms of the original fermions and a set of four projec-
tion operators which keep track of the environment by
measuring the occupation numbers in each of the four
possible states available for hopping.

To be explicit, we first concentrate on the Hubbard
model9 which is expected to capture the main features
of the physics of lattice fermions in a narrow energy
band. The corresponding Hamiltonian includes a
nearest-neighbor hopping, t&, and an on-site repulsion
between electrons of different spins, U:

H = X ttIft' fI + U haft' ft fi' f;-
jJ, cr

where fi (f, ) are creation (annihilation) operators
for an electron of spin a (= +1) at site i. In analogy
with the "slave boson" approach we enlarge the Fock
space at each site, to contain in addition to the original
fermions a set of four bosons represented by the
creation (anmhilation) operators e; (e;), p; (p, ), d;

(d, ). This enlarged space contains unphysical states
which can be eliminated by imposing the set of con-
straints

~la~i + eI e + dI dI= ~ ~

fiofio =Piopin+di di. o +1.
When restricted by (2) the Bose fields e„p,
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(a.= —1), and d, act respectively as projection opera-
tors onto the empty, singly occupied (with spin up and
down), and doubly occupied electronic states at each
site. Equation (2a) can then be interpreted as a com-
pleteness relation and reflects the fact that no more
and no less than one of the four possible states must
be occupied at each site; the second constraint equates
the two ways of counting the fermion occupancy of a
given spin. It is easy to check that in the physical sub-
space defined by Eqs. (2) the Hamiltonian

H=xtqfi f& z, zj +Uxd, d, , (3a)
ij, cr i

Zlo = ei p/o + pi —o dl ~ (3b)

has the same matrix elements as those calculated for
(1) in the original Hilbert space.

To calculate observable quantities we write down the
partition function Z of model (3) as a functional in-
tegral over coherent states of Fermi and Bose fields. 6 7

We note that the constraints (2) commute with the
Hamiltonian (3) and thus the physical Hilbert space is
preserved under time evolution. The constraints (2a)
and (2b) are thus enforced at each site by time-
independent Lagrange multipliers, which we symbolize
below by A. ,t'i and A. ,tz~ (o = +1), respectively. We
integrate out the Fermi fields (by using standard rules
for integration over Grassmann variables) to reexpress
Z in terms of the effective action for the bosons, S, as

Z=& [De)[DP~ ][Dd] [dA. ,~'i][d&i/i]exp[ —„d7 S(v)],
iver

S(~) = X, [e,'(Q, +xi"')el+2 p, (ti, +A. i"' —X,"')p, +d, (Q, + U+A. ,
"'—Z,"')d, ]

(4a)

ti~+trln[8;J(~1, —p — h+~lt2~)+titzl zj ], (4b

where p, is the chemical potential which is adjusted to fix the average occupation of the site, n = 1 —5, and h is an
external magnetic field. (Since the physics is symmetric about n = 1 '0 we restrict ourselves to the case 8 ~ 0.)

We note that in the atomic limit (t&=0) the functional integral (4) can be calculated exactly and leads to the
known results. For tita0 the simplest approach to (4) is the saddle-point approximation in which all Bose fields
and Lagrange multipliers are taken to be independent of space and time. Unfortunately, the resulting saddle-point
equations lead to the incorrect result in the noninteracting limit (which occurs either for U=O or in the case of
fully polarized spins). This is because in this approximation the constraints are only satisfied on the average, and
not explicitly at each site of the lattice. For example, when U = 0 and 5 =0, ez = d2 = pz = —,

' and thus

(Zlozjo) = e po + d p-o + 2edpo p —o

rather than unity as it should be for the noninteracting system.
In order to resolve this problem we make use of the fact that the procedure described above is not unique; there

are many different Hamiltonians, H, with different properties in the enlarged Hilbert space which lead to the same
spectrum as (1) when restricted to the physical subspace defined by (2). Clearly this arbitrariness presents no dif-
ficulty as long as the constraints are handled exactly. However, any approximation which relaxes the constraints is
sensitive to the precise choice of H. In any practical calculation this ambiguity can be used to our advantage, and
the form of Hcan be determined by requiring that the approximation scheme leads to physically sensible results in
known limiting cases. In particular, in this case we replace z, in (3b) by another operator, z, :

Zio (1 dl dl PioPio) Zlo(1 ei ei Pi oPI —o')— (5)

which has the same eigenvalues and eigenvectors as z, in the physical subspace but also leads to the correct U= 0
limit in the saddle-point approximation. The resulting saddle-point free-energy functional f= —kaTlnZ/N can
then be written as

p+ oof= Ud' kaTX J AP(()—in[I+ e "' " "'" ']+a"'(Qp'+ e'+ 1' 1)—QZ~'~(p'+ —12) (6)

where q
—= (z, zj ), and Tis the temperature.

As the simplest illustration of our approach we consider (6) in the paramagnetic phase of the half-filled-band
Hubbard model (i.e., n =1, 5 =0). From general arguments as well as by a direct inspection of the saddle-point
equations, p, = U/2; also we set h =0, and we assume a symmetric density of states, p(g). The Lagrange multi-
pliers can then be easily eliminated to arrive at a (free energy) functional of 1 alone, f=a Ts. Here, —
s =2f dg p(() q(f(qg)+ Udz, and q =8dz(l —2dz); s is the entropy per particle calculated for a lattice gas of
free fermions with an effective hopping amplitude t&= qt&, and f is the Fermi function f(g) = (e ~+ I) '. At
T=O, K is minimized by d =1/4(l —U/U, ) with U, =16f d(p(g)g. Within our approximation this corre-
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sponds to the vanishing of the number of doubly occu-
pied sites and indicates that the system is undergoing a
metal-insulator transition at a finite critical value of U.

The same result was derived by Brinkman and Rice'2

by using the variational wave function and the approxi-
mation scheme proposed by Gutzwiller. 4 The
Gutzwiller approach to the half-filled Hubbard model
has recently received a great deal of attention as a
model for liquid 3He close to the solidification curve. '3

At sufficiently high temperatures we expect on
physical grounds that the correlation effects become
unimportant and q should approach unity. However,
in the rigid-band picture the entropy favors q =0 and
the system undergoes a first-order transition at a tem-
perature of order fV /U. We stress that none of the
"slave boson" mean-field or Gutzwiller-type theories
proposed to date'4 give a sensible crossover between
low and high temperatures and we expect that new
techniques treating fluctuations in fermion and boson
degrees of freedom on an equal footing will be re-
quired in order to remedy this problem. Even so, it is
likely that the behavior predicted from the finite-
temperature saddle point to (4) is qualitatively correct
at the lowest temperatures. In particular, it is appeal-
ing to interpret the initial decrease of q with tempera-
ture in terms of an increase of the coherent low-
frequency fluctuations accompanying the hopping par-
ticle.

Our approach also provides a natural framework for
studying magnetic properties of the Hubbard model.
We have investigated the stability of the paramagnetic
ground state with respect to both ferromagnetism and
antiferromagnetism. At the ferromagnetic saddle
point pf —pf = m (m is the magnetization), while an-
tiferromagnetism can be parametrized as usual by di-
viding the system into two sublattices, A and 8, with
the sublattice Bose fields satisfying the relations
~~=ea. 4=44 p~l =pal p~l =pal and p)l—pzt =m„ the staggered magnetization. The fer-
romagnetic and antiferromagnetic phase boundaries
(as determined by the vanishing of the inverse mag-
netic and staggered susceptibilities) are shown in Fig.
1.'5 It is intriguing that in this mean-field theory the
possibility for ferromagnetism is restricted to very
large values of U in contrast to the predictions of
Stoner-type weak-coupling theories. ' The tendency
towards ferromagnetism for infinite U is in accordance
with Nagaoka's theorem'0 which asserts that the
ground state of a system with d2 =0 and 5 = I/N is fer-
romagnetic (W is the number of sites), while the
disappearance of ferromagnetism at large U for
5=0.38 agrees qualitatively with the corresponding
result of Kanamori. ' Also, we stress that, as expected
in lattices with perfect nesting, and in contrast with a
previous calculation based on the Gutzwiiler wave
function due to Ogawa et al. , ' the ground state of the
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FIG. 1. The boundaries of stability of the paramagnetic
phase of the Hubbard model with respect to ferromagnetism
(solid line, left axis) and antiferromagnetism (dashed line,
right axis) as determined from the vanishing of the inverse
magnetic and staggered susceptibilities, respectively.

half-filled Hubbard model is antiferromagnetic for an
infmitesimal interaction U; for values of U up to
U= 40 W the corresponding energy is lower than that
given by Hartree-Fock theory. '6 The competition
between ferromagnetism and antiferromagnetism, and
the full phase diagram of the Hubbard model will be
discussed elsewhere. '9

Finally, the approach outlined above can also be
used to study the Anderson-lattice Hamiltonian6 7 20

for all values of U. Here we make two comments
about our results'9: (i) In the paramagnetic phase and
for infinite U (1=0) our calculation exactly agrees
with that of Rice and Ueda, 20 who applied the
Gutzwiller variational approach to the Anderson lat-
tice. Their intriguing result that, for infinite Uand in
the Kondo regime, the spin- —,

' Anderson lattice has an
instability with respect to ferromagnetism appears in
our formulation as a consequence of the delocalization
of "holes" in the fband, in analogy with the Nagaoka
limit of the Hubbard model. (ii) We note that the bo-
son introduced by Coleman6 for the infinite-U case
corresponds, strictly speaking, to the e; (e; ) of our
treatment. It can then be easily seen that the resulting
mean-field theories can only agree in the paramagnetic
regime and in the limit of infinite spin degeneracy.

In this Letter we presented a new approach to
strongly correlated Fermi systems, in the context of
which we derive a new strong-coupling mean-field
theory. While in the simplest physical situations the
mean-field results are equivalent to those of the
Gutzwiller variational approach, our formulation is
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systematic and is applicable with equal ease to both
magnetic and nonmagnetic phases of these systems.
In the case of the Anderson model this mean-field
theory incorporates the competition between magnet-
ism and the Kondo effect. This work can be extended
in several directions: One can study the effect of
Gaussian fluctuations about the saddle point, and one
can apply this mean-field approach to richer physical
situations (disorder, several bands, deformable lat-
tice). Work in these directions is currently in progress.
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