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Role of Vortex Strings in the Three-Dimensional O(2) Model
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Using Monte Carlo techniques, we show that vortex strings are responsible for the phase transi-
tion in the three-dimensional planar model. The phase structure for a generalized planar model
with vortex suppression is determined. This latter model has the unusual feature of lang-range or-
der in a ground state with finite, disordering entropy.

PACS numbers: 75.40.Dy, 05.70.Jk, 64.60.Cn, 75.1Q.Hk

The O(2) ( = XY) model has the interesting and im-
portant feature that it supports topological defects
which in d - 2 dimensions are vortices. This property
can be understood as a consequence of the fact that
the first homotopy group sri(S') =Z is nontrivial.
Indeed, according to the Kosterlitz-Thouless (KT)
theory, ' the phase transition in the 2D O(2) model oc-
curs because of the dissociation of vortex-antivortex
pairs as the temperature T increases through T, . In
general, defects of dimension p will occur if
mz i~+i&(G) is nontrivial, where G is the space in
which the order parameter lies. Thus, the 3D O(2)
model has one-dimensional vortex strings. Several
questions then arise. What role do these defects play' ?
How is the behavior of the system altered if one
suppresses, or indeed entirely removes, the vortex
strings? These questions have considerable interest,
since the 3D O(2) model is relevant to the critical
behavior of a number of physical systems such as mag-
netic materials with planar spin Hamiltonians and the
superfluid transition in liquid 4He. We know of no
theory in three dimensions analogous to the KT theory
for two dimensions which predicts, from considera-
tions of vortex-string interactions, such properties as
how the correlation length diverges at the critical
point, or the form of the singularity in the free energy.
High-temperature series expansions3 and the e expan-
sion4 do predict the critical exponents, but they make
no direct reference to the presence or absence of vor-
tex strings in the model. Similarly, high-temperature
series expansions, or equivalently, a 1/d expansion,
predict the value of the critical temperature (admitted-
ly nonuniversal, but still of interest), and again make
no reference to vortex strings. Nevertheless, it is ex-
pected, 6 on the basis of analysis of the Villain form of
the model, that these objects do play a significant role
in the phase transition. One is thus left with the some-
what unsettling situation that the quantitative know-
ledge of the critical behavior of the 3D O(2) model is
based on analyses which do not involve vortex strings
in sharp contrast to the KT theory of the 2D O(2)
model. In this paper we report results which explicitly
show that vortex strings are responsible for the phase
transition in the former model.

The O(2) model in three dimensions is defined by
(classical) spin-angle variables at vertices of a cubic
lattice, which take values in the range ( —n, n ), and
by the following action and partition function:

(la)

(lb)

M=%, '[((Xcos8 ) ) + ((Xsin8t)2) ]'I (2)

For our Monte Carlo simulations, we used the
method of Metropolis et aL Our runs were made on
lattice sizes from 6 to 14 . In most cases, a number
NT of sweeps were for thermalization and X~ were for
measurement of expectation values, where one sweep
means a sequential updating of all spins in the lattice.
We denote this combination by (ItIr, ItI~). In an up-
dating, a new spin 8' is obtained from the original spin

where (ij ) denotes nearest-neighbor sites and
K=—l/ktsT (here, we only consider the case K ~0).
This model is known to have a second-order phase
transition at4 K=0.46 from an ordered phase with
nonzero magnetization to a disordered phase. To mea-
sure properties associated with vortices7 we use the
following definitions. Denote the discretized gradients
of the spin angle around a square as At=Hi 8t+i, —
where i = 1,2, 3, 4 labels the sites on this square. Each
itit can be decomposed into Is, i=2~mt+bi, where
mi= +1 and the reduced gradient angle lies in the
standard range ZtC( —~, n) Then. since X,Et=0, it
follows that X,ht= —2m', where the vortex charge
ii=0, +1 (and, for a set of measure zero, +2).
serves as a measure of the vortex string density. For
periodic boundary conditions, which we use, the total
vortex charge of the lattice vanishes.

As has been noted previously, s magnetization can-
not be meaningfully averaged on a finite lattice be-
cause, in a continuous spin system, there is no energy
barrier preventing the spins from rotating as a whole.
We use the definition for magnetization given in Ref.
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FIG. 2. Phase diagram in the E4. plane.
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FIG. l. (a) Vortex density plotted as a function of K.
Measurements were made on an S3 lattice with (50,50) itera-

tions. Also sho~n is the high-temperature series result, to
quadratic order. (b) Logarithm of vortex density, measured

on a 103 lattice with (50,50) iterations, as a function of tem-

perature.

0.8 I.O

8'=8+randx I, (3)

where rand is a random number in the interval [—1,1],
and 1is chosen by the program to keep the number of
rejections as close as possible to one half of the
number of updates. This method of updating ensures
fast thermalization.

As a test of the accuracy of our Monte Carlo data,
we have measured the internal energy U- (S ), vor-
tex density, and magnetization and found them to be
in good agreement with the analytic expansions for low

and high temperatures. In Fig. 1(a), we plat results
for ( ~~ ~ ) obtained on an 83 lattice using (50,50) itera-
tions. The data from larger lattices give the same
values, apart from small finite-size shifts in T, and
behavior very near T,. Furthermore we have checked
thermalization by performing (300,300) iterations.
From these measurements, we determine the phase
transition to occur at K=0.47+0.05, which agrees
with previous calculations. " In Fig. 1(a), we also plot
the first three terms in a high-temperature expansion
of the vortex density. It can be shown that the
lowest-arder term is exactly —,', and the other terms

can be evaluated by use of standard numerical integra-
tion techniques.

Note from Fig. 1(a) that the vortex density is large

in the high-temperature region and small at low tem-
perature, decreasing sharply as Tdecreases through T„
which is consistent with the idea of vortex dissociation
driving the phase transition as postulated in Ref. 6. In
this reference, the Villain approximation was used to
make computations in the O(2) model. In particular,
one can compute the vortex density at low tempera-
ture, where the Villain approximation is thought to be
applicable, and show that it has an exponential falloff
with K9 In the three-dimensional planar model,
where the lowest-energy excited configuration allowed
is a loop of four vortices, we find, using the methods
of Refs. 6 and 9 ( I~ )) = e " x where K = —,

' m2. In Fig.
1(b), we plot the logarithm of vortex density as a func-
tion of temperature for low temperatures, measured
on a 103 lattice. The solid line in this figure is the Vil-
lain result which is consistent with our data even in the
region K slightly smaller than K, .

While the measurements of vortex density are con-
sistent with the transition being driven by vortices,
they do not by themselves prove it. To investigate the
question further, we introduce a term into the action
to suppress or enhance vortices'o:

plaq

With this action, we map out the phase diagram in the
two parameters X and K. The rationale behind this
procedure is that, if the phase transition in K disap-
pears when we suppress vortices sufficiently, then vor-
tices are responsible for this transition. The result is
shown in Fig. 2. This phase diagram was mapped by
use of heating and cooling measurements of magneti-
zation, vortex density, and internal energy. An exam-
ple of these measurements is shown in Fig. 3, for
K-0. Again, as a check that our Monte Carlo pro-
gram is correct, we plot in Figs. 3(a) and 3(c) the
linear terms in an expansion of internal energy and
vortex density, respectively. The agreement with the
Monte Carlo calculation is excellent. An interesting
feature is that for large )i., M saturates at =0.47, sub-
stantially less than l. As a check on the measurement
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FIG. 3. Various thermodynamic quantities plotted as a
function of A, for EC -0. Measurements were made on an 83

lattice with (50,50) iterations. (a) Reduced internal energy.
Also shown is the small-A. series result, to linear order. (h)
Magnetization. (c) Vortex density. Also shown is the
small-X series result, to linear order.

of M, runs were made with three quite different start-
ing configurations: ordered, random, and a configura-
tion in which v -0 for all squares and M 0; as shown
in Fig. 4, these all converge to the same value M
=0.4Z at A.

What makes this result especially interesting is that
the long-range order is present even in the absence of
any direct ferromagnetic spin-spin coupling. Clearly, a
sufficiently aligned ferromappie tie spin configuration
has zero vortex-string density. However, the converse
is false; one can easily produce configurations with
~ =0 for all squares, but nevertheless M 0. Indeed,
starting with a completely ferromagnetic ordered
configuration, one can, with zero expenditure of inter-
nal energy, reverse the spins in half of the lattice.
This is in contrast to the situation with a usual spin-

ITERATIONS
FIG. 4. Magnetization as a function of iteration number

for different starts, at h, = 3. (a) Ordered start. (1) Random
start. (c) Start with zero magnetization and vorticity.

spin interaction Hamiltonian. Our model (2) thus ex-
hibits what we believe is a qualitatively new mecha-
nism of ordering, caused by an interaction which even
as A. ~ allows a great amount of spin rotation at
each site.

Our model contradicts the common belief that
long-range order is incompatible with finite ground-
state disordering entropy S. To our knowledge, it is
the first such counterexample for a pure system
without (annealed or quenched) disorder. " Actually,
for any classical Q(N) model, S is logarithmically
divergent as & ~ (or as E ~) as a result of the
Goldstone mode(s). However, this does not entail
true disorder, since it represents rigid rotations of all
spins in the lattice as a whole, which only rotate the
direction of M, but do not reduce its magnitude. The
type of ground state which has been thought to be in-
compatible with long-range order is that which has dis-
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FIG. 5. A pictorial representation of a two-dimensional
slice which contributes to nonzero ground-state entropy.

order truly distinguished from the Goldstone modes.
A proof that after removing the zero-mode nondisor-
dering contribution to the entropy, our system has fin-
ite ground-state entropy, is provided by the class of
spin configurations in Fig. 5. Each spin marked with a
heavy dot is free to rotate without yielding (except for
a set of angles of measure zero) any nonzero u. Since
there are N, /8 of these spins, where W, denotes the
number of lattice sites, it follows that they make a fi-
nite contribution to the entropy (per site). Although
such disorder does not remove the long-range order, it
reduces the ground-state magnetization below unity.

Our work thus shows that vortex strings do indeed
play a crucial role in the 3D O(2) model. The task of
deriving the critical exponents in a way which takes
these topological defects into acccount, as the KT
theory did for (the nonalgebraic singularities in) the
2D O(2) model, remains an outstanding unsolved
problem. Moreover, our model (2) exhibits a qualita-
tively new mechanism for ordering and the unusual
behavior of long-range order in the presence of
ground-state disorder.
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