VOLUME 57, NUMBER 11

PHYSICAL REVIEW LETTERS

15 SEPTEMBER 1986

Fourier Acceleration of Relaxation Processes in Disordered Systems

Ghassan George Batrouni

(a)

Newman Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853

Alex Hansen

(b)

Department of Physics, Cornell University, Ithaca, New York 14853

and

Mark Nelkin

School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853
(Received 14 April 1986)

Critical slowing down poses a major obstacle to reaching the steady-state distribution in large-
scale numerical simulations. We demonstrate how to alleviate this problem by means of Fourier
acceleration, a method consisting of updating in k space with a k-dependent time step. The method
is general and applicable to a wide range of problems. We demonstrate its use by numerical experi-
ments on random resistor networks at the percolation threshold.

PACS numbers: 64.60.Ak, 02.70.+d, 66.30.Dn

Large-scale numerical simulations of physical sys-
tems often have to face the major obstacle of ‘‘critical
slowing down.”” By this we mean that the number of
iterations needed for the system to relax to its steady
state grows faster than the volume. For example, to
obtain the current distribution on a random resistor
network at the percolation threshold,! the number of
iterations for the Jacobi relaxation method grows like
LY ™ where dy is the fractal dimension of the
current-carrying backbone and d,, is the random-walk
dimension. For? d=2, d;~1.62 and d,, = 2.87, mak-
ing the growth in computational requirements quite
severe. This is a rather general difficulty which has
been studied in other contexts.>* The methods of
Ref. 3, i.e., Fourier acceleration, can alleviate this dif-
ficulty in many problems, ranging from lattice field
theory to spin glasses. In this paper we apply the
method to the random resistor network at the percola-
tion threshold. This relatively simple example is of
current physical interest, and gives a useful benchmark
for the method.

The random resistor network at the percolation
threshold in d =2 is constructed as follows: Imagine a
square lattice of size L (times the lattice constant).
There are two types of links connecting neighboring
nodes: They either have unit resistance with probabili-
ty p, or infinite resistance (having been cut) with pro-
bability 1—p. At the percolation threshold p. =+,
clusters of connected finite resistors appear that have
no length scale associated with them other than the
lattice constant and L, and are thus fractal within this
range. We pick a cluster large enough to connect a
node close to the lower left corner to a node close to
the upper right corner of the lattice (the ‘‘infinite”’
cluster). Current is then fed into the cluster through
these two nodes (ports) from an external source, and
we calculate the resulting currents through each finite

1336

resistor belonging to this cluster. The Kirchhhoff

equation for each node is then

- 3,(V,= V) +1,=DV,+1,=0, (1)

where V; is the voltage on the /i th node, and /; is the
external current fed into the network when i denotes
either of the two ports and is zero otherwise. The
sum, which we denote by D?, is over nearest-neighbor
nodes connected to the ith node by a unit resistor.
The simplest way to solve Eq. (1) is to write the dif-
fusion equation

dv,/dt=D*V,+1,. ()

Clearly, the steady-state solution of this diffusion (or
relaxation) process is given by dV;/dt=0, and is
therefore the solution to Eq. (1).

As is typical of lattice simulations, the above relaxa-
tion method suffers from critical slowing down. To
see this, consider the Fourier transform of the dif-
fusion equation in discrete time on a Euclidean lattice

P(k,t+€)=P(k,0) —ek’P(k,t), (3)

where P is some density, €= t/n is the discrete time
step, and » is the number of iterations. The solution
to this equation is

P(k,1)=(1—k%)"P(k,0) ~ P(k,0)e~¥*. (4)

The relaxation time for a mode k is proportional to
k=2. The overall relaxation time T is therefore dom-
inated by the large-scale structure (small k) of the lat-
tice. This is critical slowing down. If we now choose
ex k~2in Eq. (4), P(k,? will evolve at a constant rate
for all k. Critical slowing down is completely eliminat-
ed. This exact removal is not possible for interacting
theories, although it can be reduced drastically. For
more details, see Ref. 3.

This critical slowing down is more severe on fractal

VOLUME 57, NUMBER 11

PHYSICAL REVIEW LETTERS

15 SEPTEMBER 1986

lattices because diffusion is much slower there than on
ordinary Euclidean lattices.” Consider a backbone with
N~ Ldf nodes. To implement the algorithm of Eq.
(2) we need N operations per sweep, while the correla-
tion length &, i.e., the “‘radius of influence’’ of a node
at a time ¢, is given by & ~ t/d". The overall relaxa-
tion time T therefore must scale as

T~ L%, (5)

Multiplying this with the number of operations needed
per sweep, N, we find that computing time scales as
LY +d‘", as already quoted. For Euclidean lattices,
d, =2 independent of d, and on fractals d,, > 2. For
bond percolation dy+d,=4.5 so that critical slowing
down is very severe.

Use of a k-dependent time step in k space translates
into use of a coordinate-dependent time step in real
space. So, Eq. (2) becomes

Viln+1) =V (n) + 3)[D*V,(m) + []. (6)

€ is now a function of iand j, and EJ means that the
summation runs only over the backbone since the po-
tentials and the dynamics are only defined there.
Equivalently, Eq. (6) can be understood from another
point of view. It is the evolution equation of a system
with coordinate-dependent and long-range couplings,
but where the steady-state configuration is identical to
that of Eq. (2). The advantage of Eq. (6) is that the
presence of long-range interactions offers the possibili-
ty, through the right choice of €(i,j), of faster conver-
gence for the large-scale structure, since it is no longer
being mediated only by nearest-neighbor interactions.

The question is now how to choose the site-
dependent €. On Euclidean lattices it is the zero-
frequency (time™!) Green’s function for the evolution
equation, D~2. On fractal lattices we use the ensem-
ble average® of D~2. Thus,

€(ij)e rd"_df, @)

where r=|i—j|. Notice that € is translationally in-
variant, since it is an average, even though each reali-
zation of the backbone is far from being so.

To define Fourier transforms we need the entire lat-
tice. So, instead of a restricted sum in Eq. (6), extend
the summation to include all sites on the lattice, and
define

D*V,(n)=0, (8a)

V,(n)=0, (8b)
for i not belonging to the backbone. Then the algo-
rithm works as follows: We have the configuration at
the nth time step, and we use Eq. (6), with the sum-
mation extended over all lattice sites, to obtain the
configuration at the (n+1)th step. For ion the back-
bone, this gives with Eq. (8a) an evolution identical to
that of Eq. (6), with the restricted summation, and for

inot belonging to the backbone,
Viln+1)= 3)[D2V;(m) + I;]. ©9)

We see that nodes belonging to the backbone are up-
dated correctly. However, the dynamics on the back-
bone has leaked out and affected points on the outside.
Up to this point, this leakage is inconsequential since
its effect has not fed back onto the backbone, but it
will if we go ahead with the next update. To prevent
this, we reinitialize D?V;(n+1) and V;(n+1) to zero
for all i not belonging to the backbone. Then we
iterate again. Thus, the reinitialization between up-
dates allows us to use the entire lattice instead of being
confined to the backbone where we cannot define the
Fourier transforms. The Fourier acceleratxon is imple-
mented by writing in Eq. (6) €(i_) = F~1&Fto obtain

Vi(n+1)
=Vi(n+ 3, FeFID*V,(n) + 1], (10)
where € is the Fourier transform of e,
i k——d+dj—dw an

Fis a fast Fourler transform (FFT) from real to k
space, and F~1is its inverse. In words, the Fourier
accelerated algorithm, Eq. (10), works as follows.
Given the configuration at the n th time step, compute
the quantity [D?V,(n) + 1] at every site, and then per-
form a Fourier transformation on itA(represented sym-
bolically by the multiplication with F). Then multiply
by € and perform a transformation back into coordi-
nate space (the multiplication by F~!), and add the
result to the old configuration to find the updated one.
Since € is translationally invariant, its Fourier
transform is diagonal. Thus the matrix product
between € and F [D? V,+I,] involves only L4 opera-
tions and not LYx LY. This is the reason for doing
the Fourier transforms.

° T T T
ok]
-2 -—
]
e
g3 .
FFT NO FFT
_4 __1
5 L !)
0 10000 20000 30000
ITERATIONS
FIG. 1. A plot of logeA, as defined by Eq. (17), vs

number of iterations, for one realization on a 32 x 32 lattice.

1337

VOLUME 57, NUMBER 11

PHYSICAL REVIEW LETTERS

15 SEPTEMBER 1986

Now, we discuss the stopping condition. Figure 1
shows that the convergence of the algorithm is geo-
metric, i.e., the solution at the n th time step can be
written as

Vin) = V(o) + CA", (12)

where V;(oo) is the exact solution. A (< 1) is the
largest eigenvalue of D? it is of the form
exp(— ek,%,m), and it controls the rate of convergence
as discussed earlier. Clearly, if A << 1, convergence is
very fast, and there is no critical slowing down. The
problem is that when A = 1 a very large nis needed for
convergence.
It might be tempting to define the ‘‘error,”” A’, by

A'=87+1/ Y, (13)
sn+l_ (E’[Viln+1) = V,(n)12}12
=[3,CA2 N1\ |/ v
=CAM1-=-\)/V, (14)
V=I[3,V2(m]"2, (15)

and stop the iteration when A’ is less than the desired
accuracy. It is easy to show that this is a reasonable es-
timate of the error only when A << 1, i.e., no critical
slowing down. To see this, remember that the true er-
ror is the difference between the exact answer
[V,(e0)] and the approximate one [V;(n)]; ie., by
Eq. (13)

A={3,[Vi(n) = V() 12} VY v (16a)
=[3,CHY\/V=C\" V. (16b)

Notice that the difference between the true error A
and the estimate A’ is a factor of (1—X). If A << 1,
i.e., no critical slowing down, A = A’, and either quan-
tity can be used as an error estimate.

However, in the case of critical slowing down,
A =1, A’ is much smaller than A, and even though in
principle, one can take A’ arbitrarily small, resulting in
an arbitrarily high accuracy, this is not enough because
this accuracy is not known. Without this knowledge a
proper interpretation of the data is not possible. A is
therefore a more accurate error estimate, and to calcu-
late it we need to calculate CA" By substitution from
Eq. (13), we see that the error at the (n+1)th step,
CA"*1/V, is given by

A=8"T1/V|1— (87/8nt1)]. (17)

We tested the above results numerically, and found
that specifying, for example, A’=10"% for L =32,
resulted in accuracy of only 10™%. On the other hand,
specifying A =10"° resulted in an accuracy of order
10~%. We emphasize that since our starting point was
Eq. (12), the above analysis holds only for geometric
convergence, which occurs here.

We tested the Fourier acceleration and compared it

1338

to unaccelerated runs on two-dimensional lattices of
size 8, 16, 32, 64, and 128. It worked very well for all
of them. We noticed that for the lattices of size 8, 16,
and to a lesser extent 32, choosing € ~ k3, corre-
sponding to a one-dimensional structure, worked
better than the fractal form. We interpret this as being
caused by the ‘‘red’’ bonds (links) dominating the
backbone for these small lattices.’

In Fig. 1 we show plots of log;pA versus number of
iterations for a typical run on a lattice of size 32.
Clearly the accelerated algorithm is much faster than
the unaccelerated one. We checked the configurations
produced by these runs and they agree to within the
specified tolerance. The linear form of the plots sim-
ply means that the system reached its asymptotic re-
gime where relaxation follows an exponential decay
law, i.e., geometric convergence.

Table I shows the number of iterations and time (on
an FPS 264 computer) needed on lattices of size 32,
64, and 128. These numbers are averages over twenty
realizations (different backbones). For L =64 and
128, the unaccelerated runs were too long to do for 20
realizations. We did a single run for L =64 that took
more than 103 iterations to reach A=10"%, while the
corresponding accelerated run took less than 103 itera-
tions.

We now estimate how the number of operations is
expected to scale with L. Each (fast) Fourier
transform costs L%logL? while the multiplication by €
costs L4 operations. So, the algorithm scales as
L4+2dL%ogL ~ 2dL%ogL per sweep. If we assume
that critical slowing down has been totally eliminated,
this is, within a constant factor, the entire computa-
tional cost for convergence since the total number of
sweeps will be independent of lattice size. This is to
be compared to the L% operations for the unac-
celerated algorithm. Clearly the gain is large and gets
larger with lattice size. Table I shows that increasing L
increases the number of iterations by a small factor.
This means that critical slowing down has not been to-
tally removed although its effect is drastically reduced.

TABLE 1. For the accelerated and unaccelerated algo-
rithms, the average number of sweeps and central process-
ing unit (CPU) seconds per realization needed to reach an
accuracy <A =10"* These values are averages over twen-
ty realizations for each algorithm at each L. For L =64 and
128, the unaccelerated algorithm was much too slow to run.

FFT No FFT
Time Time
L Sweeps (CPU sec) Sweeps (CPU sec)
32 930 30 17000 590
64 3100 310 SRR ce.
128 6950 2750

VOLUME 57, NUMBER 11

PHYSICAL REVIEW LETTERS

15 SEPTEMBER 1986

The Fourier-acceleration ideas discussed and tested
in this paper can be applied to any algorithm in which
the entire lattice is updated at the same time, such as
the above Jacobi method and the conjugate-gradient
method.® The Metropolis® and Gauss-Seidel® method
are not such algorithms, since updating is done site by
site. This would require the calling of two FFT’s per
site, which is too time consuming, whereas for the
Jacobi and conjugate-gradient methods, we only call
two FFT’s per sweep through the whole lattice. We
tested our Fourier-acceleration ideas on the conju-
gate-gradient (CG) method® !° for L =128. We found
that the unaccelerated CG method took 200 sec per
backbone (averaging over 20 backbones) to solve for
the voltage distribution at machine precision. The
Fourier-accelerated CG method took 40 sec for the
same run. We found the optimal e(k) for this algo-
rithm to be k~23 whereas for the accelerated Jacobi
method it was k=32, The origin of this difference is
that the CG method suffers less critical slowing down
than the Jacobi method. Clearly, Fourier acceleration
also works for the CG method.

The fact that the CG method is so much faster, for
this problem, than the accelerated Jacobi method does
not mean that it is always superior. The CG method
does not work for systems with many local minima,
such as spin glasses. For such systems, CG will find a
minimum, which is more likely to be one of many lo-
cal ones, instead of the desired global minimum. One
efficient method for obtaining global minima is
Kirkpatrick’s heating-annealing method,!! but being
based on the Metropolis scheme, it cannot be Fourier
accelerated. On the other hand, the heating-annealing
idea can be combined with our Fourier-accelerated
Jacobi method to yield a very efficient optimization al-
gorithm. This may be done as follows: When the ac-
celerated Jacobi algorithm finds a minimum, give the
system a thermal kick by adding a random number to
the right-hand side of Eq. (10). If the system were in
a global minimum, it is likely to relax back to it. If the
minimum were local, the thermal kick can help the
system overcome the local potential barrier and relax
into another minimum. As in Kirkpatrick’s method,
this is repeated until we find the global minimum, ex-

cept that here we have Fourier acceleration working
for us, and as we have shown this can lead to very sub-
stantial gains in speed and efficiency.

The authors thank C. T. H. Davies, P. Duxbury,
G. H. Gunaratne, G. R. Katz, G. P. Lepage,
K. Runge, and A. D. Sokal for useful discussions.
This work was supported by the National Science
Foundation through Grants No. PHY 82-09011 (for
G.G.B.), DMR 81-08328-A (for A.H. and M.N.), and
DMR 81-17011 (for A.H.), and by the Fulbright
Foundation (for A.H.). Computations supporting this
research were performed on the Cornell Production
Supercomputer Facility, which is supported in part by
the National Science Foundation, New York State, and
the IBM Corporation.

(@Present address: Department of Physics, Boston
University, Boston, MA 02215.

(b) Address after October 1, 1986: Groupe de Physique
des Solides, Ecole Normale Supérieure, 24 rue Lhomond,
75231 Paris Cedex 05, France.

IR. Rammal, C. Tannous, P. Breton, and A.-M. S. Trem-
blay, Phys. Rev. Lett. 54, 1718 (1985); L. de Arcangelis,
S. Redner, and A. Coniglio, Phys. Rev. B 31, 4725 (1985).

2H. J. Herrman and H. E. Stanley, Phys. Rev. Lett. 53,
1121 (1984); S. Havlin, D. Movshovitz, B. Trus, and G. H.
Weiss, J. Phys. A 18, L719 (1985).

3G. G. Batrouni, G. R. Katz, A. S. Kronfeld, G. P.
Lepage, B. Svetitsky, and K. G. Wilson, Phys. Rev. D 32,
2736 (1985).

4). Goodman and A. D. Sokal, Phys. Rev. Lett. 56, 1015
(1986).

SR. Rammal and G. Toulouse, J. Phys. (Paris), Lett. 44,
L13 (1983).

6B. O’Shaughnessy and 1. Procaccia, Phys. Rev. Lett. 54,
455 (1985), and Phys. Rev. A 32, 3073 (1985).

7A. Coniglio, J. Phys. A 15, 3829 (1982).

8]. Stoer and R. Bulirsch, Introduction to Numerical Analysis
(Springer-Verlag, New York, 1980).

9W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes (Cambridge Univ. Press, Cam-
bridge, United Kingdom, 1986).

10G. R. Katz, Ph.D. thesis, Cornell University, 1986 (un-
published).

1S, Kirkpatrick, J. Stat. Phys. 34, 975 (1984).

1339

