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It is pointed out here that a coherent state propagating through an amplitude-dispersive medium
will, under suitable conditions, evolve into a quantum superposition of two coherent states 180' out
of phase with each other. The response of a homodyne detector to this superposition of macro-
scopically distinguishable states is calculated. Signatures which an experimentalist might look for in

the homodyne detector's output in order to verify the generation of such states are described.
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Here the time evolution of an initial coherent state
under the influence of an anharmonic-oscillator Ham-
iltonian is considered. The anharmonic term is taken
to be proportional to tt", where n is the number opera-
tor and the integer k is greater than 1. This model is
exactly soluble and the case when k = 2 has been ex-
tensively studied recently by Milburn and Holmes. "
We show that when k is even the initial coherent state
evolves, after a suitable amount of time has elapsed,
into a quantum superposition of two coherent states
180' out of phase with respect to each other. This
behavior is hinted at by the behavior of the 0 function
studied by Milburn. '

The anharmonic-oscillator model can be regarded as
describing the evolution of a coherent state injected
into a transmission line with a nonlinear susceptibility,
an optical fiber for example. Stated in electrical terms,
it should thus be possible to engineer a nonlinear
transmission line in which a sinusoidal signal rising 1

V positive will, after propagating sufficiently far along
the transmission line, be converted into a quantum
mechanical superposition of two sinusoidal signals in
which one signal rises 1 V positive as the other drops 1

V negative. It is suggested that the process by which
these Schrodinger's catlike states3 4 (a quantum super-
position of macroscopically distinguishable states) are
generated from an initial (essentially classical)
coherent state may be a fairly general property of non-
linear systems provided dissipation is kept sufficiently
low.

A homodyne detector in which signal light is made
to interfere with intense local oscillator light~ 8 of the
same frequency on the surface of a photodetector pro-
vides a means by which an experimentalist could check
to see if a quantum superposition of two coherent
states has in fact been generated. In particular, it is
shown that if the phase of the local-oscillator light is
chosen properly an interference between the two
coherent states of the superposition arises which can

where ~ is the energy-level splitting for the harmonic-
oscillator part of the Hamiltonian and 0 is the
strength of the anharmonic term. In the interaction
picture where 0 n" is regarded as the interaction part
of the Hamiltonian, and initial coherent state

t
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, n=o

where ~n) is the n-particle eigenstate, will evolve
under the inflluence of the Hamiltonian according to

&- nt""~&)

Substituting Eq. (2) into Eq. (3) one can write
1

exp( —i@„)
(u, t& =exp — Xn", " (n),

) n=O n!

where

@„=0 tn"

(3)

(4)

By making the substitution t= t' +r2/7IIand noting
that nk is an integer, it is immediately apparent that

that is, the state vector is periodic with a period 2m. /O.
Equation (4) is particularly easy to evaluate for special—~@avalues of t. In particular when t=~/0 then e
= ( —1)". Hence the state ~n) evolves into the state

~

—~) at t = ~/A. Of more interest is what happens at
the intermediate time t=7r/2A At t=7r/20. one has

e "=1 when n is even. When n is odd and k is even
one has e "= —i. %hen n and k are both odd

be detected as fringes in the probability distribution for
the homodyne-detector's output current.

Choosing units such that ii = 1, consider an
anharmonic-oscillator Hamiltonian of the form

H = QJ 5 + 0 tt
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"= —I( —I) " '~~ . The resulting state Eq. (4)
can then be recognized as a generalized coherent state
introduced by Titulaer and Glauber and discussed by
Stoler' and by Bialynicka-Birula. " Generalized co-
herent states for which @„ is periodic in n can be ex-
pressed as a superposition of a finite number of
coherent states. In particular, when k is even

l~, ~/2 f1 &
= ( I/&2) [e ' ~

I ~) + e'"~
I
—~& ] (7)

and when k is odd

consider a beam splitter in which light enters the port
at. A fraction q of the light passes through the beam
splitter and exits port bt, the rest of the light I —g ex-
its port b2. A beam splitter must also have a second
input port a2 and it will be assumed that no light
enters this port. The mode transformation performed
by the beam splitter may be taken to be

b, = q'~'a, + (1 —q) '~'a, ,

+) t/2a ++lj2a

In, m/20) =-,' [In& —Ii~&+ I
—n&+ I

—Ia)]. (8) Consider first the case when the input state Iin) has
the form Iin) = Iu) t IO) 2, that is a coherent state lu)
enters port a~ of the beam splitter and the vacuum
state enters through port a2. Expressed in terms of
the creation operator at for the mode at, the input
state is

It has now been shown that under the evolution of the
Hamiltonian Eq. (1) an initial coherent state l~) will

evolve into a coherent superposition of a finite num-
ber of coherent states which are macroscopically dis-
tinguishable when lnl is large.

For simplicity the discussion will now be restricted I&I2 ~ &n

to the case when k in Eq. (I) is even. Then, as can be )in) =exp X, (at')"I &, I &, .
seen from Eq. (7), at t=m/2A the initial coherent
state has evolved into a coherent superposition of the Solving Eq. (9) for at and substituting this into Eq.
coherent states la) and I

—n) which are 180' out of (10) one can show that the output state is given by'2

phase with respect to each other.
lout = Ivy' 'a

i I
—(I vy)' '+-

Before evaluating the response of a homodyne
detector to this state it is instructive to evaluate what where lq' 2n) t is the coherent state leaving port bt
happens to the state upon passing through a beam and I

—(1 —q)'~2m)2 is the coherent state leaving port
splitter, particularly since the beam splitter can be used b2. Applying these same techniques, one can show
to model medium or detector losses. 5 8 To this end that the state Eq. (7), upon passing through a beam

splitter, becomes

Io t) = (I/v2) [ -' "Iq"' &, I

—(I —q)'" ) + ' "I—q"'
&

l(I-~)" &, l.
A homodyne detector5 8 observing the light leaving the port bt of the beam splitter measures the operator

x = (I/ J2) [e"b, + e "b)' ],

(10)

(12)

where the local oscillator phase 8 is controlled by the experimenter.
Introducing the operator

y=(1/j))[e"b, +e "b,']- (13)

the xy representation Q,„,(xy) = (xy lout) of the state Eq. (11) can be constructed using standard techniques. '3

One finds

q.„,(xy) =(I/J2)[e ' "e (x)~t, (y)+e' ~'P, (x)Pg(y)],

where y =q' 2n and 5 = (1 —g)'~2m and the wave functions on the right-hand side have the form

yp(x) =,i, exp' — +
x' 2xpe" pe"

I p I'
r/4

(14)

The probability distribution
POO

P(x) =
~ dy y.'„,(x,y)y.„,(x,y)

for the output current x delivered by the homodyne detector independent of what has left port b2 of the beam
splitter can now be evaluated. Setting a = lu le'~ one finds

P(x) = (I/2 4~) exp[ —Ix —42' l~ I cos(&+ @)I'l+ exp[ —Ix+42' l~ I cos(&+0)I']
1I

+ 2 exp[ —2(1 q) lul'] exp—[ —x2 —2q i~12 cos2(~+ 0 ) ] sin[242' l~ I sin(H + @)x] . (17)
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Probability distributions of this form have been ob-
tained by Caldeira and Leggett'" and by Walls and Mil-
burn' in their investigations of the rate of loss of
coherence in a damped harmonic oscillator. The first
two terms of this probability distribution represent two
Gaussian hills centered at x=42g~ct~ cos(8+@) and
x= —42q~n~ cos(&+$), respectively. If the local os-
cillator phase angle 0 is adjusted such that
cos(8+ $) = +1 and ~n~ is sufficiently large, the pro-
bability distribution will consist essentially of two
well-separated Gaussian hills. Already, for ~cr ~

= 2 and

q =1 the Gaussian hills are well separated as can be
seen in Fig. 1(a). The last term of Eq. (17) represents
an interference which arises because the state Eq. (7)
is in a coherent superposition of the states ~n) and

~

—o). The observability of this interference term is
enhanced by adjusting the local-oscillator phase such
that cos(8+@)=0. Figure 1(b) depicts the resulting
interference fringes for the case when )n~=2 and
q=1. Hence by adjusting the local-oscillator phase 0
such that cos2(8+@)=1 and then to cos2(H+$) =0
an experimentalist can verify first that the state has
macroscopically distinguishable components (particu-
larly when ~o~ is large) and then that the state is a
coherent superposition rather than a statistical mix-
ture. As ~cr~ becomes larger the number of interfer-

ence fringes increases, as can be seen by comparing
Fig. 1(b) with Fig. 2(a) where ~u ~

= 5.
From the exponential exp[ —2(1 —q) ~n~ ] appear-

ing in the interference term one can see that the in-
terference fringes rapidly fade as the loss 1 —7) be-
comes larger than I/2~a~2. This is depicted in Figs.
2(a) —2(c) as the loss is increased from 0 to 0.02 and
then to 0.05. Hence for large ~a~ even a very small
amount of loss will wash out the interference fringes
and make the resulting probability distributions indis-
tinguishable from that of a statistical mixture of the
states ~n) and

~

—a). The severity with which losses
tend to destroy coherence between macroscopically
distinguishable states has been noted by a number of
authors and we refer the reader to Milburn and
Holmes'2 for references. From a practical point of
view, in order not to be limited by medium losses or
detector inefficiencies, the experiment described here
could only be realistically performed for small ~n~.

I
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FIG. 1. The probability distribution P (x ) for the
homodyne-detector's output current x for the case ~hen
q= I and ~u~ =2. In (a) the homodyne detector's phase is
adjusted so that the Gaussian hills are maximally separated,
i.e., cos(H +$) = l. In (b) the homodyne detector's phase is
adjusted such that sin(t)+@) =1. Here the probability dis-
tribution exhibits interference fringes.

FIG. 2. The probability distribution P(x) for the homo-
dyne detector's output current x for the case when ~cx

~

= 5
and sin(8+@) = l. In (a), (b), and (c) the detector effi-
ciency is respectively 1, 0.98, and 0.95. As the detector effi-
ciency is decreased the fringe visibility rapidly degrades.
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Fortunately as already noted, even for lo'1=2 (the
mean number of photons in this case is 4) the two
coherent states of the superposition are well separated.

The Hamiltonian, Eq. {1),is rather special and may
be difficult to realize in practice. We have also per-
formed accurate numerical simulations'6 of strongly
pump-depleted four-wave mixers governed by the
Hamiltonian

0= A, tzab b +H.c.,

where a is the signal mode and b is the pump mode. If
the system is started out initially with the signal in a
vacuum state and the pump in a coherent state then
when the system has evolved to the point where nearly
all the pump energy has been transferred to the signal
mode, the signal consists of two well-separated hills
when viewed with a homodyne detector whose local-
oscillator phase has been adjusted appropriately.
When the local-oscillator phase is adjusted ~/2 rad
from the setting which maximizes the distance
between the hills, interference fringes are clearly visi-
ble. This suggests that the process by which a
coherent state is converted into a coherent superposi-
tion of two macroscopically distinguishable states may
be a fairly general property of nonlinear systems with
sufficiently low dissipation.

We would like to thank G. J. Milburn, R. E. Slush-

er, and J. S. Denker for stimulating discussions on this
topic.
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