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Improved Estimate of the Scalar-Glueball Mass
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We present results for the 0++ glueball mass ( mo) and the string tension (o ) in pure gauge lat-

tice QCD with a four-parameter improved action. We suggest and confirm that previous estimates
for ma/v o have been too low because of the influence of the unphysical and nonuniversal phase
structure in the fundamental-adjoint coupling plane. %e find that ~=1200-1400 MeV using
Vcr 420 MeV.

PACS numbers: 12.38.6c, 11.15.Ha

Foremost among the aims of lattice quantum chro-
modynamics (LQCD) is to predict the spectrum of
glueballs and other exotic states. A major step towards
this goal would be a calculation of the glueball spec-
trum in lattice SU(3) without dynamical fermions. If
the dominant effect of adding dynamical fermions is to
shift the value of the bare coupling constant, then the
spectrum deduced from the pure gauge theory could
be directly confronted with experiment, except for the
effects of decays and mixing.

Even this lesser goal of establishing the spectrum in
the pure gauge theory is far from being attained. The
only measurements of glueball correlators on a reason-
ably large lattice and with signals which unambiguous-
ly expose the lightest glueball state have been those of
de Forcrand et al. ,

' who use the source method. Ex-
pressing their results as a ratio of the scalar-glueball
mass (mG) to the square root of the string tension
(v cr) as determined by the source method in the same
ensemble, 2 one finds mG/v tr =1.96(7), 2,45(12), and
2.65(18) for couplings on the Wilson axis 6/g =5.5,
5.7, and 5.9, respectively. Thus, there are significant
scaling violations in mG/Jo. for the range of couplings
investigated along the Wilson axis. If we nevertheless
take mG/Jo =2.0-2.65, a range suggested by earlier
numerical work3 and strong-coupling expansions along
the Wilson axis, as well as the above, then we obtain
an estimate mG = 850-1100MeV, using the identifica-
tion Ma=420 MeV. This result may be hard to
reconcile with the data on m m phase shifts, s although a
very recent analysis6 of these and other data has sug-
gested a possible extra state at about 980 MeV. Clear-

ly it is of great phenomenological importance to firm
up the lattice prediction before including dynamical
fermions.

In recent years, a great effort has been devoted to
Monte Carlo renormalization-group (MCRG) study of
LQCD in order to determine the value of the Wilson-
axis coupling beyond which there is scaling. 7 s For KF
around 6.0, the string tension and deconfinement-
transition temperature scale roughly in accord with the
nonperturbative P function, but the glueball mass does
not. In this Letter we suggest a reason why mG/Vcr
has not been exhibiting scaling, and why it may have
been underestimated by calculations done along the
Wilson axis. In confirmation, we present the results of
a computation which removes at least part of the prob-
lem, suggesting that mG/Vcr=3. 0(3). In physical
units this corresponds to ma=1200-1400 MeV, a
value certainly consistent with the experimental data.

We consider here pure gauge LQCD with the gener-
ic action

S[Ul = X, K Re Tr(U ), (1)

where the U are various Wilson loops in different
representations. Most simulations of this action have
been performed in the plane defined by the fundamen-
tal (or "Wilson" ) and adjoint representations of the
plaquette. In this plane it has been determined that
there is a line of first-order phase transitions that ap-
proach the Wilson axis from above and which ter-
minate above the Wilson axis. This line of transitions,
if continued beyond the end point, would intersect the
Wilson axis at KF=5.6. Several numerical studies
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have measured the specific heat defined by

CVK+ 2=— (Re Tr(U~)) = (Q„ReTr[U~(x~)]Re Tr(Uci)) I, „„„„d
F

(2)

along the Wilson axis and in the fundamental-adjoint
plane. In short, these studies have found a bump in
the specific heat [see Fig. (6) of Bowler er al. 'o], which
rapidly grows in magnitude as one moves closer to the
end point. It is difficult to ascertain on the basis of
simulations on small lattices whether Ci really
diverges at the end point or not. Lacking any concrete
evidence, we can only conjecture that the end point is
a critical point and shall refer to it as the singular
point. The string tension does not show pronounced
effects due to the phase structure —in particular it
reinains finite even at the singular point. 'o" The
derivative Bo./8KF does become large, causing a dip in
the P function. It should be remembered that these
effects have nothing to do with the continuum limit of
LQCD; rather they are lattice artifacts which could be
removed by taking the continuum limit along a trajec-
tory far away from the phase structure.

The crucial observation which follows from the nu-
merical results is this: Since CV is nothing but the
connected plaquette-plaquette correlation function
(with quantum numbers 0++) at zero four-
momentum, a singularity in the specific heat implies a
zero-mass pole in the scalar-glueball channel. The ra-
tio mG/Jo therefore vanishes at the singular point. A
numerical calculation done very close to the singular
point'2 did find the lattice value of mG to be abnormal-
ly small. This then allows us to understand the nu-
merical results for mG/Jo on the Wilson axis—they
are depressed by the singular point. Finally, the
anomalous scaling behavior of iriG along the Wilson
axis can be explained as follows: The rapid increase in
mG as one moves towards stronger coupling (exponen-
tial if asymptotic scaling is valid) is suppressed, mak-
ing the associated "P function" larger. 7

If this explanation is correct then there are two op-
tions for extracting the continuum results. Move
along the Wilson axis towards weaker coupling until
mG/Jo reaches an asymptote; or use an action farther
away from the singular point to decrease its effect. '3

We here report results from this second approach.
The improved action we have used consists of the

plaquette in the fundamental, 8, and 6 representations
as well as the 1 x 2 rectangle in the proportion

Ke = —0.12, = —0.12,
Kp-

= —0.04, (3)
KF

when the traces are normalized to unity. It was deter-
mined by an MCRG calculation to lie close to the re-

normalized trajectory for the W3 renormalization-
group transformation. ' We expect the continuum lim-
it to be smoother along this line of actions, i.e. , with
smaller corrections to the asymptotic mass ratios for a
given (physical) lattice size. Whether or not this hope
is realized, the action is farther away from the singular
point and thus allows us to test our assertion made
above. It has been pointed out that such actions may
not have a positive-definite transfer matrix. ' This
would lead to an oscillatory component in the correla-
tion functions for which we find no evidence (see Figs.
1 and 2).

By a finite-temperature numerical analysis, " we
have determined that the deconfining transition for
N, =6 occurs at KF=10.15(5). Therefore, we have
chosen to work at two values of the coupling constant:
Kq=9.9, which we have simulated on 63x21 and
93X 21 lattices, and KF =10.5 on 93&&21 lattices, using
a twenty-hit Metropolis algorithm. The data were tak-
en every other sweep on 30000 configurations for the
6 X21 lattice and on 18000 configurations for the
93X21 ones. The first 500 sweeps were discarded and
a check for thermalization was made by reanalyzing
without the first 2000 configurations. To make contact
with calculations done on the Wilson axis, we com-
pared large Wilson loops calculated with the improved

action on 12 x 30 lattices with those obtained on the
Wilson axis. We find that our two couplings are
roughly equivalent to 6/g2 = 5.83 and 5.96, respective-

ly. The deconfinement transition for N, =6 occurs at
6/g2= 5.872(2) '5 on the Wilson axis. We thus have a
simultaneous matching of the string tension and the
deconfinement temperature between the improved-
action and Wilson-action lattices. It is noteworthy that
the ratio T,/Jo appears to be universal, while mG/Wa.

is not. This is a clear demonstration that to check scal-
ing all mass ratios must be considered.

We have determined the string tension from the
correlations between spatial Polyakov loops in pres-
ence of a cold source at r =0. This method has less
systematic uncertainties than the Wilson-loop method;
for example there are no corner effects. We find a
clean exponential falloff, with the signal being fitted
weil by a single exponential for t = 3 and beyond. The
results are presented in Table I and a fit is shown in
Fig. 1. We find the data at KF=9.9 consistent with
the finite-size scaling form suggested by integration of
the string fluctuation modes':
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TABLE I. Monte Carlo data for the scalar-glueba11 mass
and the string tension. 10"

KF Lattice ~(L)I 4~(~) mg(L)

9.9 63 x 21 0.32 (1) 0.287 (3) 0.79 (11)
9.9 9'x 21 0.63(2) 0.288(4) 0.89(8)

10.5 9'x 21 0.38(l) 0.235(2) 0.67(6)

my (~)
Qa. (~)

~ ~

3.1(3)
3.0(3)

10

The extrapolated values quoted in Table I are obtained
by use of this relation. It is worth mentioning that the
value of Wa extracted from Wilson loops is systemati-
cally larger. This is a feature common to all calcula-
tions. In this regard our result for mG/J~ is a com-
parative study.

Finally, we have measured the 0++ glueball mass
on the same cold-source configurations, using I x I,
1 x 2, and 2 x 2 Wilson loops. On the 93 x 21 lattices we
find that the data from t = 3 to 9 can be well fitted
with a single exponential plus a constant. A variational
calculation'7 shows that the glueball wave function is
dominated by the 2 x 2 loops. The best fits are also ob-
tained with 2 && 2 loops; we quote these results in Table
I, and Fig. 2 shows the fit at KF=10.5. The errors
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FIG. 1. Fit to the string-tension data.

quoted on these numbers are larger than the spread
among the values obtained by use of different size
loops. Despite larger statistics, the glueball signal on
the 63x 21 lattice is not as good. As a result of the
large errors in tttG(L), we can only obtain a weak esti-
mate of the three-scalar-glueball coupling constant.
Using the finite-size scaling form'8

m(L) = m(~) 1—
16m m( )

1

m(~)L (5)

we find uGGG
———(3/16m) [X/m(~) ] =70(70). Then,

the infinite-volume results using Eq. (5) are mG
=0.90(8) and 0.70(6) at KF =9.9 and 10.5, respec-
tively.

To summarize, Table I gives our values for mG/Wo. .
As argued earlier, this result is larger than the value on
the Wilson axis obtained with the same method. We
are repeating the calculations at KF=9.2 and 11.2 to
check for improved scaling and to see whether m&/ j~
has reached its continuum limit.

We also attempted to calculate the tensor-glueball
mass using a source appropriately constructed from the
elements of Z3. Unfortunately, like others before, ' we
do not see a signal beyond a distance of three lattice
spacings, and thus do not quote a result. We are thus
unable to verify the claim'9 that the 2++ glueball may
be nearly degenerate with or even lighter than the
0++ one. We also looked for a scalar-glueball signal
in the correlations of spatial Polyakov loops in the ad-
joint representation. '9 Only on the 63x 21 lattice were
we able to see a reasonable signal. 20 It extended up to
t = 5, and gave a value of mG consistent with the pre-
vious one.

In conclusion, we have suggested an explanation for
the pattern of numerical results for the glueball
masses, and have presented results with an improved

Kq =- '|0.5

a
V3

0.196

0.194

4 6
T]X'IE '['I'P
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FIG. 2. Fit to the 0++ glueball data.

action supporting that explanation. Our results suggest
that the scalar glueball lies in the experimentally
murky region between 1200 and 1400 MeV.
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