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Critical Exponent of Chaotic Transients in Nonlinear Dynamical Systems
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The average lifetime of a chaotic transient versus a system parameter is studied for the case
wherein a chaotic attractor is converted into a chaotic transient upon collision with its basin boun-
dary (a crisis). Typically the a~erage lifetime T depends upon the system parameter p via
T —

~p —p, ~
&, where p, denotes the value of p at the crisis and we caII y the critical exponent of

the chaotic transient. A theory determining y for two-dimensional maps is developed and com-
pared ~ith numerical experiments. The theory also applies to critical behavior at interior crises.

PACS numbers: 05.45.+b
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FIG. 1. The Ikeda map is z„+q= p+ Bz„exp{in
—in/(1+ ~z„~') I, where z is complex (z=x+iy), p is re-
lated to the laser input amplitude, 8 is the coefficient of re-

flectivity of the partially reflecting mirrors of the cavity, K is
the laser empty cavity detuning, and a measures the detun-
ing due to the presence of a nonlinear medium in the cavity.
The parameters are p = 1.0027, 8=0.9, K =0.4, and n = 6.0.

In dissipative dynamical systems it is common to see
the destruction of a chaotic attractor as a parameter
varies (a boundary crisis'). As the parameter (call it p)
is raised, the distance between the chaotic attractor
and its basin boundary decreases until, at a critical
value p =p„ the attractor and its basin boundary touch
(the crisis). For p & p, the chaotic attractor no longer
exists, but is replaced by a chaotic transient. In a

chaotic transient one typically observes orbits which,

after being attracted toward the vicinity of the former
chaotic attractor, look like what orbits on that chaotic
attractor looked like for p ( p, . After bouncing
amund in a chaotic way for a possibly long time such

an orbit then, rather suddenly, starts to move off to-

ward some other distant attractor. For example, Fig. 1

shows many iterates of a chaotic transient orbit for the

Ikeda map2 (a map developed as a model of a laser

ring cavity). The numbers indicate the sequence in
which points appear in the figure. Thus after the first
few iterations the orbit rapidly approaches the de-
stroyed attractor. The orbit then bounces around on
this remnant for about 84435 iterations, after which it
"finds its way out, " and then rapidly moves off toward
an attractor outside the frame of the figure.

The length of a chaotic transient for a particular or-
bit depends sensitively on the initial condition. How-

ever, if one looks at many randomly chosen initial

conditions, then one typically sees that i, the transient
lifetime, has an exponential probability distribution,
P(r) = T 'exp( —r/T), for large ~, where T is the
mean lifetime of the chaotic transient. In many cases,
we find that the dependence of Ton the parameter p
scales as'3 T- (p —p, ) " for p slightly greater than

p, . We call y the critical exponent of the chaotic tran-
sient. It is the purpose of this paper to develop a
theoretical understanding and analytical basis for the
prediction of the critical exponent y for typical situa-
tions occurring in two-dimensional maps. (These
results will also apply to many three-dimensional
continuous-time systems, and we believe that the
techniques developed will be useful in other situa-
tions, e.g. , more dimensions. )

The class of two-dimensional maps addressed in this
work are those in which the crisis is due to a tangency
of the stable manifold of an unstable periodic orbit
with the unstable manifold of another or the same un-
stable periodic orbit. These types of crises appear to
be the only kinds of crises which can occur for 2D map
systems that are strictly dissipative (i.e. , magnitude of
Jacobian determinant less than 1 everywhere) and is a
ubiquitous feature in such commonly studied non-
linear systems as the forced damped pendulum (or
Josephson junction), the forced Duffing equation, the
Henon map (cf. below), and many others. For these
systems there is either one of the following two typical

types of crises: (i) Heieroclinic tangency crisis. In this
case, the stable manifold of an unstable periodic orbit
(8) on the boundary is tangent to the unstable mani-
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FIG. 2. (a) Schematic illustration of heteroclinic tangen-
cies of the stable manifold of the unstable periodic orbit 8
and the unstable manifold of the unstable periodic orbit A.
(For simplicity we take the periods of A and 8 to be 1.)
Crosshatching denotes the basin of another attractor. (b)
Schematic illustration of homoclinic tangencies of the stable
and unstable manifolds of the unstable periodic orbit 8.
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fold of an unstable periodic orbit (A) on the attractor,
as in Fig. 2(a). (ii) Hornoclinic tangency crisis. In this
case, the stable and unstable manifolds of an unstable
periodic orbit (8) on the boundary are tangent, as in
Fig. 2(b).

In both cases, the basin boundary is usually found to
be the closure of the stable manifold of the unstable
periodic orbit 8, as indicated in Fig. 2. The chaotic at-
tractor, on the other hand, is (in both cases) the clo-
sure of the branch of the unstable manifold of 8 that
points into the basin. For the case of Fig. 2(a), the
chaotic attractor is also the closure of the unstable
manifold of A. For both cases, the tangency implies
that the chaotic attractor touches the basin boundary
(i.e., a crisis4) .

We argue that the critical exponent y obeys two dis-
tinct laws depending on the type of tangency the sys-
tem exhibits at the crisis. In the case of a heteroclinic
crisis, we have

y = —,
' + (Inlet l)/l»I~21 I, (1)

where ai and n2 are the expanding (lo.il ) 1) and
contracting (ln2I &1) eigenvalues, respectively, of
the periodic orbit A in Fig. 2. In the case of a homo-
clinic crisis, we have

(2)

where Pi and P2 are the expanding and contracting
eigenvalues of the periodic orbit Bin Fig. 2(b). In ex-
periments, a mathematical description of the system is
often not available. Nevertheless, the eigenvalues and
hence y can be deduced by an examination of experi-
mental time series at the end of the chaotic transient,
and this need only be done for a singfe value of p near
p, . For example, in Fig. 1 the points labeled
86431-86433 are close to the stable manifold of 8 and
are approaching 8. Thus they can be used to estimate
P2. Similarly, points 86442-86444 lie close to the un-
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FIG. 3. logioT vs logio(p —p, ). Each dot was obtained by
an averaging of 300 randomly chosen initial conditions
in the former basin of attraction. (a) J= —0.3, p,
= 1.426921114. . . ; straight line corresponds to y given by
Eq. (1). (b) 1=+0.3, p, =2.124672450. . . , and y given
by Eq. (2).

stable manifold of Band yield an estimate of pi.
Figuie 3 shows the numerical results (dots) for T

vs p —p, along with the predictions of Eqs. (1) and (2)
(the straight lines). The system tested in Fig. 3 is the
Henon map, x„+i=p —x„2 —ly„, y„ii=x„. Figure
3(a) corresponds to a heteroclinic crisis [Eq. (1)],
awhile Fig. 3(b) corresponds to a homoclinic crisis [Eq.
(2)]. As is evident from the figures, the agreement
with Eqs. (1) and (2) is quite good. Superimposed on
the general power-law dependence, Fig. 3(b) also
shows evidence of considerable substructure. This is
probably due to the striated Cantor set character of the
attractor and the fact that the basin boundary is fractals
in this parameter range. As our analysis leading to Eq.
(2) shows, the attractor's striations accumulate on the
tangency point asymptotically at the geometric rate p2.
Correspondingly, as indicated in Fig. 3(b), the sub-
structure has a component periodic in log(p —p, ) with
period liogP2!. We proceed now with the derivation of
formulas (1) and (2).

D«ivan on of&q. 0).—For the 'heteroclinic crisis, as
p is increased past p„ the unstable manifold of A
crosses the stable manifold of 8 (cf. Fig. 4). An orbit
landing in the shaded region ab of the figure is attract-
ed along the stable manifold of 8 and then rapidly
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FKJ. 4. Schematic diagram illustrating the derivation of
Eq. (1).
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leaves the transient region moving to the left along the
outward branch of the unstable manifold of B Fo.r p
near p„ the dimensions of region ab are of the order4 r
and r'/2, where r=p —p, (cf. Fig. 4). We now iterate
the region ab backwards in time for n steps. For large
enough n, except for the first few backwards iterates,
the change in the region ab is governed by the lineari-
zation of the map about A. Thus the preiterated re-
gion a'b' has dimensions of the order of r/aq and
r'/ /ai, as shown in Fig. 4. Since after falling in region
a'b' the orbit soon (i.e. , n steps after) falls in region
ab, we estimate the transient lifetime as the average
time it takes an orbit to land in region a'b'. Now con-
sider the probability measure of the attractor at p = p, .

T ' is then estimated as the probability that an orbit
on the p = p, attractor falls on a given iterate in the re-
gion a'b', and we denote this probability by p, (r),
Now reduce r by the factor n2 (r n2r) and consider
the resulting region ab. After we iterate backwards
n+ I steps (instead of n), the long dimension of the
preiterated region is again r/n2 but the width is
changed to (a2r ) t/2/ni + t Since the . attractor is
presumed to be smooth in the direction of the unstable
manifold of A, we have

p ( r) r /cl't At

+ (~ &) ( Z) t/2/&n+1 &t/2
'

With the assumption that p, (r) —ru, Eq. (1) then fol-
lows.

Deriuation of Eq. (2).—Refer to Fig. 5 which corre-
sponds to the case p = p, . Let y bc the distance from B
along the upper segment of the stable manifold of B,
and let x denote the distance from B along the right-
going segment of the unstable manifold of B. In the
figure we have drawn these manifolds as being perpen-
dicular straight lines near B, and we shall treat the dis-
tances x and y as Cartesian coordinates (this can be ac-
complished via a change of variables). A tangency oc-
curs at (x,y) = (O,yo). Consider the cross-hatched re-
gion ab indicated in the figure, where the right-hand

FIG 5. (.a) Schematic diagram illustrating the derivation
of Eq. (2). (b) Blowup of region a'b'.

boundary of this region is the vertical line x —x. We
estimate T ' at r = p —p, (( 1 as the measure p, (r)
of the attractor in the shaded region ab for x —Kr
(where E is a constant), i.e., T ' —p, (r). Say that the
point (x0, 0) is the first backward iterate of the tangen-
cy point (O,yo), that region a'b' is the first backward
iterate of region ab, and that the point x,yo) maps to
(xo,y) after n forward iterations, where n is the small-
est integer such that xo & xo. For small x, most of the
n iterations mapping (xyo) to (xo,y) occur near B,
where the map is nearly linear. 6 Thus xPt" —xo and

yp2 -yo, which yields x —(y)» with p=(lnpt)/
~lnp2~. As indicated in Fig. 5, the part of the attractor
near (xo, 0) is striated into bands running nearly paral-
lel to the unstable manifold of B and has a smooth
structure along these bands. At x=xo let P(y)dy
denote the measure of the attractor per unit length in x
between y and y+ dy. fStrictly speaking, the probabili-
ty density Q(y) does not in general exist, but we shall
talk as if densities do exist. ] As a result of the assumed
smoothness of the attractor probability measure paral-
lel to the unstable manifold, tII (y) evaluated at xo and
at xo are of the same order. Let @(x) be the "proba-
bility density" @(x)= dp/dx. By conservation of
probability we now obtain two relationships between
@(x) and P(y). First since (xyo) maps to (xq,y) in

n iteration, we have @(x)dx—if'(y) dy; and, using x—(y)», we have our first relationship,
ill(y) —(y)» '@(y») The secon. d will be the result
of the fact that region a'b' maps on one iteration to re-
gion ab. Hence the two regions have the same mea-
sure. Region a'b' has measure p, —I'P(y') (y —y')'/2

[cf. Fig. 5(b)). Since (xo,y) maps to (x,yo) on one
iteration we set y = Kx for small x and y. Hence,

4(x) = dp/dx —„, A(y')(~~ —y')'/'dy'.
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This is our second relationship between @ and Q. As-

sumption of a power-law dependence of $ on x, viz.
P(x) —(x), and substitution into our two relation-
ships between @ and p, yields n= (p —1/2)/(I —p).
Now utilizing p, = I"@(x')dx', we have T ' —p,—(x) +' —r +", or 7 =n+ I = [2(1—p)]-'
which is Eq. (2), the desired result.

In all the preceding discussions we have been con-
cerned with crises which destroy the attractor, replacing
it with a chaotic transient. We note that there are oth-
er types of crises, called interior crises, in which a
sudden increase of the phase-space extent of the at-
tractor (rather than destruction of the attractor) takes
place. Before the interior crisis, a dynamical variable
(call it x) would vary chaotically but always be restrict-
ed to some region (say x2 & x & x& ), or a finite
number of such regions. (The latter is the case for the
period-three interior crisis discussed in Ref. 1.) Slight-

ly after the interior crisis, the time behavior would be
highly intermittent: x would usually lie in the region
to which it was formerly restricted, but occasionally it
would, rather suddenly, burst out of the restricted re-

gion, bounce around far outside it, and then return to
the former restricted region. Critical behavior near the
interior crisis could, for example, be characterized by
the average time between bursts. This should scale
with ~p —p, ~

" with 7 given by the same formulas as
for chaotic transients f viz. , Eqs. (1) and (2)]. Scaling
for interior crises may be more accessible experimen-
tally than is the scaling of chaotic transients, because
many initial conditions are necessary to obtain the
average transient lifetime, whereas the average time
between bursts is obtainable from a single orbit.

Finally, we note that in practice the experimental
observability of chaotic transients (for boundary
crises) and intermittent bursts (for interior crises)
depends strongly on the size of the exponent. For ex-
ample, for one-dimensional maps with a quadratic
maximum, y= —,', which implies that to see transients

longer than —100 requires p to be within the order of
0.01% of p, ! On the other hand, if 7

—2 (as is the
case of the map in Fig. 1) then transients longer than
100 might be expected to exist over a range of p of the

order of 10%, a much more favorable situation for ex-
perimental measurement. We believe that the fact
that 7 tends to be larger for two-dimensional maps as
compared to one-dimensional maps indicates a general
trend in that transients associated with more-dimen-
sional attractors should be more persistent. Indeed, it
has been a puzzle as to why chaotic transients and
chaotic bursts are so persistent with respect to parame-
ter variation in some experiments and numerical com-
putations9 on more-dimensional systems.
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