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Electronic Spectral Density in Heavy-Fermion Metals

V. Zlatic, t' S. K. Ghatak, b and K. H. Bennemann
Institute for Theoretical Physics, Freie Universitat Berlin, D J0-00 Berlin 33, Federal Republic ofGermany

(Received 15 October 19S5)

The electronic spectral density in heavy-fermion metals is determined by use of the periodic An-
derson Hamlltonian with interatomic hybridization. The electronic density of states N(e) exhibits
pronounced structure consisting of a narrow peak centered at the Fermi level and two broad side
peaks. These results are used to interpret x-ray photoemission spectroscopy and brernsstrahlung
isochromat spectroscopy data. The electronic mass enhancement m'/m is calculated as a function
of the intra-atomic Coulomb interaction.

PACS numbers: 75.20,Hr, 71.10.+x, 71.25.Pi

Recently, heavy-fermion metals like UBei3, UPt3,
CeCuSi2, etc. , which exhibit an anomalously large
electronic specific heat have been studied intensively. '
High-resolution x-ray photoemission (XPS) and
bremsstrahlung isochromat spectroscopy (BIS)' yield
electronic spectra which are typically several electron-
volts wide below and above aF. This is in sharp con-
trast to the one-electron density-of-states N(e) calcu-
lation3 which in addition also fails to account for a
large N(e) at eF. The bremsstrahlung experiments
yield a spectral weight typically 6-7 eV wide and fairly
asymmetrical in shape. 2

To study the structure in N(e) we perform a model,

calculation using the periodic Anderson model. 4 In
heavy-fermion compounds the separation between f
ions is typically 5-6 A and therefore f-band formation
results from the hybridization of the localized f levels
with the conduction-band states (which are a mixture
of s, p, and d states). Previous theoretical studies5 of
heavy-fermion systems attempted to determine the
electronic structure by extending the Kondo-impurity
results using intra-atomic hybridization between fand
band states. This hybridization produces a gap at eF in
the symmetrical case. In contrast, we assume inter-
atomic f-state hybridization as in recent band calcula-
tions. 3 The Hamiltonian used is given by

H- Xak nk + Xedi fi + XVtl(fi dg +H.c.)+
k, cr

Here, the first term describes conduction electrons;
the second term, felectrons at energy et; Vtt, hybridi-
zation between f states and s,p, d band states at sites i

and j; and U, intra-atomic Coulomb interaction
between f electrons. For simplicity we use the same
hybridization matrix element Vtt for s, p, and d elec-
trons. Since Vti hybridizes f states with non-f states
located at neighboring ions, we have in Bloch
representation Vk=&&k which holds for the case of
electron-hole symmetry. Note that for the nonsym-
metric case one probably has Vk~ k ea On—e m. ay
then include e in on-site energy parameters or put

u' +a +0
s-+, —I~n ~k z
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e =0. For the case of electron-hole symmetry the den-
sity of states (DOS) N(e) obviously has a peak at aF.

In order to determine N(e) we solve the Hamiltoni-
an in Hartree-Fock approximation (HF) and treat the
remaining correlation

0'=
N X fk+qtfk qtfk tfkt

k,k', q

as a perturbation. Here, electron-hole symmetry has
been assumed, et = —U/2. The HF Green's functions
for electrons of either spin is given by

(3)

n*= —1+1 ek ek

2 Qk
Qk= [(ek —e, ) +4v ak], l =et+e2 Uny

The resultant N(e) for et = 0 has a narrow peak at eF of width

8 = —,'8([1+4 ']'l' —1)=8 '

and height a /P and in addition a wide band of height proportional to u . 8 is the half-width of the rectangular
conduction band. Note that contrary to the case of intra-atomic hybridization, this peak arises from states at the
middle of the conduction band. The correlations described by 0' affect N(e) strongly. We study this by calculat-
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ing the electron self-energy X(k, co„) up to second or-
der in U. Note that the third-order corrections vanish
for the case of electron-hole symmetry, which we as-
sume, and that a similar calculation of X(k, co„) yields
good results for the single-impurity problem. t There-
fore, we determine the self-energy by
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X(k, a)„)= XG(k+q, o)„)X,(o)„+t0 ), (5)
g, lit
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where the local susceptibility X~ is in lowest approxi-
mation given by

= ——QG'(k, cu„)G (k+q, (u„+co ).
k

(6)

Note that X(kFau) is zero at cu=0 for a symmetrical
band with ~k=~ k and ak g~2= —ak, where K is
the reciprocal-lattice vector. The Green's function
G (k, ru) is given, after renormalization due to H', by
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FIG. l. Density of states N(e) resulting from the hybrid-
i»«on of the original f state with the conduction band and
from correlation. NHF{e) refers to treatment of the correla-
tions within Hartree-Fock approximation. W {= 8 eV), U,
and v denote the width of the conduction band, the intra-
atomic Coulomb interaction, and the interatomic hybridiza-
tion constant, respectively. The width of central peak is re-
duced by a factor rt= 1 —BX/B~},=o which enhances the
specific-heat coefficient (Ref. 3).

G(k, &) = [& —X(k, ~) —Vk/(~ —~ )]

Clearly, G ( k, ~ ) can be cast into the same form as
G (k, e), replacing ~& by e;+X in n ~ and ok+-. N(~)
follows from G(k, ~) with use of N(e) = —(1/
~N) Q„ImG {k, ~).

In order to study the effect of X(k, ~) on N(c) we
determine first, for simplicity, the local part of the

self-energy at T=O. The nonlocal part of the self-
energy arising from correlation involving different
atoms has been shown to be smaller than the local
part. 6 We have also calculated the momentum depen-
dence of X for ek —k. From this we learn that the
momentum dependence of X is important mainly for
N(e) at eF, whereas for energies away from eF, N(~)
is not very much affected by the k dependence of X.
The most important contribution (neglecting terms of
order of V2) to X is then given by (see also Ref. 6)

F F No(at )No(a2)NO(+3) f f t Np(et)NO(t2)NO('f3)X(0,6) = U (A ) dtt~ de2 da3 + det
~3 ~l ~2 + I~ " " " E —63 —6~ +62+ 153 t 2,i (8)

where et+-= e +- (et), etc. Assuming for simplicity No(e) = (1/28) one obtains

X(e) = [U (n ) /283 ][{3(a+8 )2ln(&+Bt) —3(~+28 )2ln(a+28 )

+{~+38 )2ln(~+38 ) —e2lne} —
{ . . . }, ,].

The resulting N(e) is shown in Fig. 1. For compar-
ison we also show the HF DOS obtained by use of
G (k, e). It is interesting to note that for e 0 one
obtains, with X (e) —(BX/Be )e, for G ( k, e ) the ex-
pression

with n= 1 —BX/B~. G is similar in form to the HF
Green's function G (k, ~), but with the important
difference that the original hybridization Vk is reduced
to V,rr= Vk/&q. As a result the width of the HF cen-
tral peak is drastically reduced to one which is of the
order of the Kondo temperature. 7 Note that such a
reduction was also obtained by Rice and Ueda. Note

that the correlations described by H' narrow the peak
in N(~) at eF, but N(~F) remains the same as its HF
value. This is due to neglect of the k dependence of X.
The number of states within this narrow f-like band
around ~F is reduced, since the peak width decreased.
The states removed from this central peak appear as
side peaks below and above ~F. These side peaks grow
and move away from eF as U increases. A drastic
reduction of the central-peak width occurs for
U )P . As U increases the spectral width of the f
states at ~F becomes broader. The effect of the hy-
bridization on N(e) can be best seen in NHF(e). Be-
cause of v the shifted level e, broadens to a central
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band of width 8 and NHF(&) =o.'/2P
To examine the effect of the k dependence of X on N(~) we use the approximation ok=Pk Then the self-

energy becomes

3k 1 (n/2 —k)2 (n/2+ k) 3k— k
8 2 e —8 (7r+k) a+8 (n —k) a+8 k

.—8 (~+k) e' —(8 k)'
+ (6e —9mB )ln +3(e+8 k)ln

e — n —k e2 —82 n' —k

where k is measured with respect to the Fermi
momentum kF=~/2. It should be noted that the
self-energy diverges at certain k values. Around the
Fermi energy it follows that

X(k, & 0) = ak+ bk" ink

with positive constants a and b. For ~k —k one has
n=1. Note that around kF X is large and negative.
This produces a dip in the DOS at e„. If n & 1, as ex-
pected from Fermi-liquid theory (n=3), then the
nonlogarithmic contribution to X dominates. One ex-
pects that this enhances the DOS at ~F. For large a the
k dependence of X(k, «) can be neglected and
X(k, e) = —,

' U /(e+ i8) . This produces peaks in

N(e) at energies ~= + U/2, 5 which correspond to
single-particle excitations in the atomic limit ( V~&

0). However, note that in addition to this atomic-
like structure which accomodates most of the f states
we also obtain a narrow peak at eF resulting from
many-body states. Although the weight of the "many
body" peak at aF might be very small, this peak affects
the properties of the system profoundly.

In summary, it follows that the local part of self-
energy, X(k=0, e), determines the overall structure
of N(e). Only at eF does N(e) depend sensitively on
the k dependence of X, which determines in particular
the weight of the central peak, e.g. , N(~F). Regarding
the spectral ~eight of the N(e) peak around ~F, we
note the following. Using X(0, ~) we find that for
U/8 ( 1 the area under the central peak amounts to
0.5 electron and for U/8 & 1.5, to approximately 0.2
electron. These values are expected not to change
much if one calculates the central peak with the help
of X(k, a) which should yield a Lorentzian-type central
peak of width of the order of T„.7 This is suggested by
the fact that the satellite peaks are not much affected
by the kdependence of X.

To estimate N(~) around ~F from specific-heat mea-
surements, one should note that the Sommerfield
specific-heat coefficient is given by y=yo[1 —(BX/
tl~), 0], with yo —N(eF), (t1X/t1e), 0 (0. We ob-
tain approximately

shown in Fig. 2. Note that even for relatively small
values of U the renormalization of N(e) by m'/m —1

is significant. This should be taken into account when
analyzing N(~F) from experiment. '2 Although we
considered here the particular choice of parameters
corresponding to electron-hole symmetry and vanish-
ingly small on-site hybridization, our results remain
qualitatively the same if we add a small constant term
to Vi, and shift simultaneously the f level so as to
remain in the metalic Hartree-Fock ground state.

Note that the calculated shapes of the side peaks of
N(~) are symmetric in contrast to XPS and BIS
results. This is to be expected since "shake up" ef-
fects generally cause asymmetric XPS and BIS spectra.
These "shake up" effects result from electron-hole
pair excitations. ' The resulting shape asymmetry is
characterized by the parameter 5 —N(eF). Conse-
quently, if the spectral weight of the central peak in
N(e) around eF is relatively significant, we expect
large asymmetric peak shapes in BIS and XPS experi-
ments. For example, we may identify the BIS peak
with our calculated side peak at energy U/2 —2 eV
above aF and of width of the order of 1 eV. By com-
parison with results obtained for core-level shape
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Results for the enhancement factor y/pa= m'/m are
FIG. 2. Relative mass enhancement (m'/m —1) as a

fonction of the hybridization constant.
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asymmetries in transition metals we estimate an addi-
tional asymmetric broadening of the satellite peaks by
1 to 2 eV. This agrees roughly with BIS results exhib-
iting a peak at 1-2 eV above eF and of width of 3-4 eV
with asymmetry of the order of 1—2 eV.2

The situation for the XPS peak is similar. The total
spectral weight spreads over 4-6 eV, 2 3 while we calcu-
late a spectral width of about 4 eV.

The results presented here for N(e) are partly simi-
lar to those obtained for a single Kondo impurity.
Consequently we expect the width TK of the central
peak to increase with temperature, " in agreement with
neutron-diffraction results. '2 Our calculations neglect
effects causing a covalent splitting of the central peak
8t eF.

Viewing the large peak in N(e) at eF as resulting
from an effective hybridization, one expects for the
electron-phonon coupling gin heavy-fermion metals, '3

in analogy to transition metals, g=gt+g2, wllre
gt ="rJetj8rtt and g2="tJ,p/8r&, and g, & g2tx V,tr && V.

Assuming that the interatomic-distance dependence of
g2 follows mainly from Vtt, then one expects for the
pressure dependence of superconductivity similar
behavior as for transition metals.

In summary, we have derived results for heavy-
fermion systems by using a well-defined theoretical
method. The structure in N(e) arises from the inter-
play of correlation and interatomic hybridization. Of
course, as a result of the perturbative treatment of U,
we do not obtain a nonanalytic dependence of q on V.

However, the large reduction of V for relatively small
hybridization may be interpreted already as an indica-
tion for a nonanalytic dependence of ri on V. Unfor-
tunately, a better treatment of U seems presently not
feasible, but would probably not change essentially the
obtained structure in N(e). Finally, coherence effects
at e„ in N(e) require a correct determination of the k
dependence of X.
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