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Integer Optimization and Zero-Temperature Fixed Point in Ising Random-Field Systems
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3 Tck TBelI Laboratories, Murray HilI, New Jersey 07974
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Phase transition in 1=3 ferromagnetic Ising models with random fields is analyzed directly at the
zero-temperature critical point. Critical behavior is extracted from correlation functions averaged
over an ensemble of exact ground states obtained with a new integer optimization algorithm. For
Gaussian distribution of random fields finite-size scaling demonstrates a continuous phase transi-

tion with effective disconnected susceptibility exponent q= —0.9, corre1ation-length exponent
v = 1.0, and magnetization exponent P =0.05.

PACS numbers: 75.10.Hk, 02.70.+d, 05.50.+q, 64.60.Cn

New scaling hypotheses were proposed in several re-
cent articles to explain the critical behaviort~ and
nonequilibrium phenomena' in Ising systems with
random fields (RF) coupling to the order parameter.
The scenario is restricted to an unspecified class of RF
distributions such that the transition is continuous
along the entire phase boundary, and as a result of the
dominance of spatial RF fluctuations over thermal
fluctuations the critical behavior is controlled by a
zero-temperature fixed point with temperature
dangerously irrelevant. s The hyperscaling is modified
to (d —8)v -2 —a, where 8 is a third independent ex-
ponent, and extremely slow relaxation is explained by
activated dynamics with relaxation time scaling in a
Vogel-Fulcher-type manner, lnv —g; with z assumed
equal to 8.

These conjectures provided a plausible explanation
of experiments on the most studied RF systems, dilute
antiferromagnets in a field, 6 and were supported by
large Monte Carlo simulations. ~ However, because of
slow relaxation it is exceedingly difficult to test the
scaling in the crucial regime close to the transition,
especially at low T (strong fields) where crossover ef-
fects do not distort the asymptotic RF critical behavior.
In this report I discuss the scaling analysis of numeri-
cal solutions of RF Ising models obtained with a new
nonrelaxational algorithm, thus completely avoiding
the equilibration problem.

Static critical behavior in strong random fields can
be obtained from a zero-temperature theory alone. In
statistical mechanics of random systems at T=O one
has to compute correlation functions of interest in the
exact ground state for each particular configuration of
the disorder variables (here, random fields), and sub-
sequently average over the ensemble of disorder confi-
gurations. Such a task can be performed by a comput-
er for a range of lattice sizes and a range of parameters
characterizing the distribution of disorder. The algo-
rithm used to generate exact ground states is described
further in the text.

I consider the ferromagnetic RF Ising models de-

fined by a nearest-neighbor Hamiltonian

H = —J X S~Sy —X„h„S„,

with uncorrelated random fields h„on sites of a cubic
L lattice with periodic boundary conditions. I com-
puted the disconnected correlation functions

average ground-state energy Eo(h) = (H) „and mag-
netization M(h) = (1/L3) (ISa p() . The brackets

), denote configurational averaging, and Sa is
the Fourier-transformed spin variable. The correlation
function (2) at q =0 defines the disconnected suscep-
tibility XL. I used several finite-size scaling techniques
to investigate the nature of the transition and to locate
the critical value of RF variance h,2 and, when applica-
ble, to obtain the estimates of critical exponents.

For the Gaussian distribution of RF with variance h2

and zero mean I find a continuous transition to a fer-
romagnetic state. There is no evidence for any
"domain phase" above the transition. The estimates
of the disconnected susceptibility exponent q (defined
by X —g2 ") and of the correlation length exponent v

are

q = —0.9, v =1.0.

The uncertainty in these values (estimated to be about
10'Yo) is due mainly to corrections to scaling, whose
form is not known, rather than to statistical errors.
The critical field h, and g were determined from the
plot of the ratios g~ ~,= ln(XL/X~, )/ln( L/L') vs h for
distinct pairs of lattice sizes in the range from 43 to
323. In the scaling limit (large L and L') a simple
power law Xt =XtiL2 " expected at h, should make all
curves intersect at a single point with coordinates h„
2 —g. Figure 1 shows a magnified intersection region
near h, for some values of L and L'. One can clearly
see the effects of corrections to scaling which,
although numerically small, are not completely negligi-
ble. The proximity of 2 —q to its upper bound of 3 re-
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away from the crossover region, and also agree with
the expansion3 to first order in e= d —2 which yields
q= —1, v= l.

Results for another RF distribution studied, the
discrete +h field with probability —,

' for each value,
proved more difficult to interpret. In contrast to the
Gaussian case the mean-field theory predicts here a
first-order transition in the low-temperature limit. '0

Finite-size scaling analysis was performed on the + h
model in the same way as described above for the
Gaussian case. My numerical solutions unambiguous-
ly show a transition to a ferromagnetic state (cf. Fig.
3), but while the correlation length grows rapidly as
h h„one does not see the crossing of lines in scal-
ing plots analogous to Figs. 1 and 4. Instead, the ratios

, all converge together only in the ferromagnetic
phase towards the limiting value of 3, and merely fan
out in stronger fields without intersecting. Magnetiza-
tion curves which are steeper than in Gaussian case,
and the absence of clear-cut signals for a continuous
transition in the finite-size scaling plots, suggest the
possibility that the transition is weakly first order in
strong discrete + h random fields. The technique used
in this work does not allow extensions to nonzero tem-
peratures, so we cannot say anything about the possi-
ble existence of a tricritical point, nor about the order
of the transition in weak random fields. Young and
Nauenberg" interpreted their Monte Carlo data in
weak random fields in favor of a first-order transition;
however, then one expects large crossover effects7
which obscure the asymptotic critical behavior. More

work is needed to resolve the puzzles of the discrete
+ hRF model.

Let me turn now to the method used to generate the
ground states. The details will be presented elsewhere.

Construction of exact lowest energy states is a qua-
dratic integer optimization problem. In contrast to
d) 2 frustrated systems, where the problem is WP
complete, '2 it was recently brought to the attention of
physicists'3 that earlier mathematical work allows one
to find ground states for models with arbitrary (even
random) but not Pustrttted exchange interactions and
arbitrary random fields in polynomially bounded com-
puting time. The problem can be reformulated'4 as a
minimum-weighted-cut problem on a certain associat-
ed graph, which in turn is related to a highly developed
theory of network flows. '5 Although for short-range
Ising models the corresponding graph is extremely
sparse, until recently the available algorithms were
nonlocal and too slow to generate large numbers of
ground states for big lattices necessary in systematic
scaling analysis. I implemented a new minimum-cut
algorithm, '6 which is local and after some careful pro-
gramming proved to be considerably faster. Interest-
ingly enough, the execution time grows visibly in the
neighborhood of the critical point, which indicates
larger fluctuations in positions of bigger ordered do-
mains of comparable energy.

The number of ground states with independent RF
configurations used in the averaging was determined
by the acceptable error of XL, and ranged from 20000
for the smallest size (43) through intermediate values
for 63, 83, 123, 163, and 243 lattices to several hundred
configurations for size 323. I also found some ground
states for up to 503= 125000 spin variables (which is a
rather large optimization problem!), but longer com-
puting time did not allow reduction of statistical errors
enough. For each value of the RF variance h2 a com-
pletely different set of RF configurations was generat-
ed.

The results of this work lead to following con-
clusion:

(1) At least for continuous RF distributions such as
the Gaussian, there indeed is a continuous phase tran-
sition in the strong-field regime, and one expects that
the transition remains continuous along the entire
phase boundary. This contrasts with extrapolations of
high-temperature series which in d = 3 were previously

interpreted in favor of a first-order transition. '7 Much
longer series are evidently required for the correct in-
terpretation. The results also do not support the pic-

ture of an equilibrium "domain phase" above the fer-
romagnetic phase boundary.

(2) Mean-field theory appears to predict correctly

the existence of distinct RF universality classes charac-
terized by the shape of RF distribution.

(3) When the proposed relation 8 =q —q and the
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exact bound g )0.5 are used together with (3) in the
hyperscaling law (d —8)t =2 —o. we find that the
specific-heat exponent a is positive and may be as
large as 0.5!

(4) Slow dynamics7's and crossovers make it un-
likely that asymptotic critical exponents could be easily
estimated in experiments on dilute antiferromagnets.
In experimentally rea!tzable weak random fields one
can maintain equilibrium only not too close to the
phase boundary, and effective exponents may signifi-
cantly differ from asymptotic ones. Birefringence ex-
perimentsts showed a sharpening of the specific-heat
peak in stronger random fields, which was described
by a logarithmic singularity (a =0). A larger positive
value of o. is indicated in the present work. This
discrepancy can be resolved if one observes that on ex-
perimental time scales large localized ordered domains
are completely frozen, as seen in neutron-scattering
experiments, 2o and only the fluctuations on short
length scales can occur: Fluctuations of large domains
would give large contributions to the magnetic specific
heat, thus enhancing the divergence even more. An
experiment on time-dependent specific heat would be
very interesting.

(5) It is worth noting that there is no simple relation
between exponentially growing relaxation times and
computational complexity of obtaining exact optimal
solutions (ground states). In the random-field systems
simulated annealing2' is unable to produce correct
ground states in any reasonable amount of time; but
the optimization problem can be easily solved in a
polynomial time with a deterministic algorithm.

It is a pleasure to acknowledge useful discussions
about optimization and algorithms with Andrew Odlyz-
ko, Ed Rothberg, and in particular Robert E. Tarjan
who informed me about the new algorithm prior to
publication. I also enjoyed discussions about random
fields with David Belanger, Daniel Fisher, David

Huse, and Vincent Jaccarino.
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