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First Observation of the Universal Periodic Corrections to Scaling:
Magnetoresistance of Normal-Metal Self-Similar Networks
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In many physical problems where renormalization-group transformations are exact, periodic os-
cillating corrections to power-law behavior are usually expected. The magnetoresistance of a
normal-metal self-similar network, which exhibits such behavior in the weak localization regime, is
sho~n to provide the first experimental evidence for this phenomenon.

PACS numbers: 64.60.Ak, 71.55.Jv, 73.60.0t

In many physical problems where scaling properties
play an important role, it is now well established that
renormalization-group (RG) transformations are the
natural tool for a detailed interpretation of the ob-
served phenomena. In this context, self-similar struc-
tures appear as the ideal models for a simple and trans-
parent illustration of scaling concepts. The most in-
teresting feature of self-similar structures is probably
the possibility to have exact RG transformations,
which allow for a detailed study of the RG flow. The
powerful RG method has been extended in recent
years to various fields including a wide range of physi-
cal problems (condensed matter, statistical and quan-
tum mechanics, fluid dynamics, disordered systems,
etc.). In general, when a RG transformation holds ex-
actly, there are two basic equations. The first one
gives the transformation law of parameters under a
scale change (length or time scale, for instance). The
second one is simply the transformation equation of a
given physical quantity (free energy, Green's function,
etc.).

In order to illustrate the purpose of this Letter, let
us consider the case of a one-parameter (x) RG and
one physical observable F(x). A simple example of a
RG transformation is provided by the following func-
tional equation for F:

p, F(x) = F[@(x)l.

Here F(x) is assumed to be a very well behaved func-
tion and p, denotes a positive real number. The func-
tion $(x), which generates the RG flow, is usually
used to extract the qualitative behavior as well as the
stability of fixed points and critical exponents. For ex-
ample if x=0 denotes a fixed point fg(0) =0] and
$(x) =&x+ . . . is the corresponding linearized
transformation, then su=in@, /Ink. is the critical ex-

ponent describing the power-law solution Fo(x) =x"
of Eq. (I) near this fixed point.

Aside from this sort of local analysis of the RG flow
near fixed points, one can be interested in the general
solutions of Eq. (I). It appears that there is actually a
large number of simple but nontrivial such solutions.
Indeed, if we assume that Fo(x) is a particular solu-
tion, then the general solution F(x) is related to
Fo(x) in terms of a periodic function p(x), with a
period 1np„ through

F(x) = Fo(x)p(lnFO(x) ).
Using the Fourier expansion of p(x), and assuming
the following expansion for the function Fo(x),

Fo( ) =x" Xg„",
n 0

one ends up with the general solution (Freal)

F(x)= X F „x"+"cos 2mm +&~„, (3)
n, m 0 in@,

where F~„and 8~„denote constant numbers.
The occurrence of these universal oscillations is ac-

tually a quite general phenomenon related to function-
al equations like Eq. (1), where @(x) is an analytical
function. In statistical mechanics, this corresponds to
critical "complex exponents" which are usually reject-
ed for translationally invariant systems since they im-
ply a length scale, or a finite size. However, these os-
cillations, although of a rather small amplitude, can ap-
pear in general when an exact RG transformation oc-
curs, as is the case for self-similar structures, and this
wiii be shown below. For a much more rigorous dis-
cussion of this point, we direct the reader to Bessis,
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Geronimo, and Moussa. 2

In order to highlight these periodic oscillations, we
have used a regular self-similar network made of sub-
micronic Al wires: the Sierpinski gasket, which is a
2D array of triangles (see Fig. 1 of Ref. 4) exhibiting a
perfect dilation symmetry. The gasket structure has
been realized by direct writing of the pattern on
PMMA (polymethylmethacrylate) resist by use of an
electron-beam microfabricator (Cambridge EBMF6).
Then the Al was deposited in the open lines of the
PMMA mask by thermal evaporation followed by a
liftoff of the resist. The Al lines are Q. l p, m thick and—0.3 p, m wide. The elementary triangles, at the
lowest length scale, are isosceles triangles of equal
height and base: 3.2 p, m. In order to optimize the
signal-to-noise ratio in our resistance measurements,
the structure was restricted to six stages of iterations:
0~ n ~ 5, and this corresponds to the basic cell. The
measured sample is a lattice of 1024 basic cells; the
overall size of the network is 3.2X 3.2 mm2.

The resistance measurements were performed be-
tween the top node of the lattice and the two other
nodes. The resistivity ratio of the Al film between
room temperature and 4.2 K was found to be 6.4. The
resistance of the sample above the superconducting
critical temperature (T,=1.23 K) was 2.47 A. Mea-
surements of the magnetoresistance R(H) were per-
formed at T=1.30 K (above T, ) with a maximum
current of 1 p, A, with use of a four-probe ac bridge. 5

In the temperature range of interest, weak localiza-
tion effects have been studied recently on 1D and 2D
clean Al films by different groups. 6 Above T„ the
low-field magnetoresistance is governed both by locali-
zation effects and by Maki-Thomson superconducting
fluctuations. The contribution of the Maki-Thomson
term can be understood by means of a simple
temperature-dependent parameter P(T/T ), which is
independent of the localization dimension. The factor
p( T/T, ), which is field independent in the low-field
regime, has no effect on the fine structure of the mag-
netoresistance (MR). However, because of its diver-
gence as T, is approached, P ( T/ T, ) provides an
enhancement factor to the weak localization effect
which allows a large improvement of the experimental
accuracy.

Typical magnetic fields range between 1 mOe and 10
Oe. Within this range, the critical temperature T, (H)
of the network has been found to exhibit a very rich
structure, as shown in the inset of Fig. 1.8 This curve,
which will be described elsewhere, 9 shows five levels
of self-similarity and provides an accurate calibration
of the flux quantization' at the different hierarchy
stages of the Sierpinski gasket. In our sample, the
magnetic field which corresponds to one supercon-
ducting flux quantum @0=he/2e in the elementary tri-
angles is 4.4 Oe, and the fine structure was observed
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FIG. 1. MR of a Sierpinski gasket of Al submicronic
wires. The inset shows the normal-superconducting phase
boundary T, (H) of the same network. The magnetic field
scale corresponds to the range of one superconducting quan-
tum flux $0 through the elementary triangular cell. Arrows
indicate the positions of reduced fluxes $/$0= 4
@=1,2, . . . ,

down to @0/512.
The MR, shown in Fig. 1, was measured at T= 1.30

K: R(H) —R(0) vs Hin a log-log plot. We see that
the fine structure, which was observed on the T, (H)
line, is no longer present. There only remain peaks at
integer values of P/@0 (not shown here), ~here @ is
the magnetic flux through an elementary triangle.
This is a manifestation of the Al'tshuler-Aronov-
Spivak effect, observed also on regular Euclidean net-
works. 5 The limiting value of the slope of this curve is
2 in the very low-field regime (Fig. 2), and this agrees
with the expected value (see below). However, close
inspection of the MR curve reveals kinks at precise
values of the magnetic flux. This behavior contrasts
with the MR behavior on regular Euclidean networks, 5

where no structure occurs at @( $0. Figure 2 shows
the variation of the slope, i.e., the logarithmic deriva-
tive 81nbA(H)/BlnH. As the field is lowered, the
slope increases up to 2 but exhibits periodic oscilla-
tions in this logarithmic plot; the associated period of
these oscillations is exactly ln4.

The oscillations of the slope of the MR curve are ac-
tually a clear signature of the phenomena discussed in
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the introduction. Furthermore, the experimental data can be analyzed up to a high level of accuracy by use of the
weak-localization theory for normal-metal networks. " For a regular network of identical strands of length a, with
a coordination number z, the integrated correction to the resistance is given by

b, R ~ 2 qcoshq —sinhq 2
(4)

R 2 z qsinhq iV

In Eq. (4), q= g/L&, where L&= (Dv&)'/z is the length over which dephasing of the electron wave function

3 ~ I I r t r r rI ~ Ig I I I F Ill)
Sin [hR(0) - hR(~+)j

8 in &~a»

results from inelastic processes (D is the diffusion
constant). The dimensionless factor is given by
K = 2e2L&/'rrtooS, where o'o is the bulk conductivity of
wires and S is their transverse section area. The sum
in Eq. (4) is taken over the /V eigenvalues ) of the
Hermitian matrix Q, defined as follows: Q = zcoshg—Iy
and Q ~

= —e i' for nearest-neighboring nodes ~,P
on the network, where y &=(2n/$0J A dl is the
magnetic phase factor induced by the vector potential
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FIG. 2. Logarithmic derivative 8 in[6, R (0) —hR (H) 1/
8 ln(@/$o) of the magneioresisiance. The upper part corre-
sponds to the experimental data. The lo~er part is the result
of the RG calculation of the same quantity (q = 0.195). On
the same plot, these two parts cannot be distinguished and
they are separated for the sake of clarity. In the inset, the
same curve is reproduced, on reduced scales, ~ith another
one corresponding to a smaller value of q = a/L~ (q =0.05)
which leads to more and more periodic oscillations. Here
$/$o denotes the reduced flux through the elementary tri-
angular cell.

In the case of the Sierpinski gasket (z = 4), it is not
easy to find a closed expression for the sum involved
in Eq. (4). However, it is possible to write down an
exact RG transformation (scaling factor b = 2), which
can be used to perform a numerical calculation of
AR/R, up to any desirable precision. Rather cumber-
some algebra is involved in this decimation procedure
and the details can be found in Ref. 11. The results
for the logarithmic derivative of the MR are shown in
Fig. 2. The only adjustable parameter in these calcula-
tions is the ratio q = a/L~, and a perfect agreement is
obtained for q = 0.195 +0.005. Here we have neglect-
ed minor corrections due to unequal lengths of the
sides of the elementary triangle. We note that the
number of maxima on Fig. 2 is very sensitive to the
value of q and this is illustrated in the inset. The
period of oscillation is equal to ln4, as expected, and
corresponds to the ratio of the enclosed fluxes by ele-
mentary cells at two successive stages. Note that the
value of 2 & so obtained is consistent with the esti-
mates" extracted from the results of Ref. 5.

The main features of the localization corrections to
resistance can be summarized as follows. At zero
magnetic field, one has hR/R —v(2 ~»/2 (d & 2) in
the scaling regime, where 7@ is the phase-coherence
breaking time and d is the spectral dimensionality of
the structure. " However, because of anomalous dif-
fusion, this result can be cast in a more familiar form,
AR/R —X~~, where X&/a =(L&/a)~ ~ is the true
phase-coherence length on the gasket and d is the frac-
tal dimensionality. Here P = d(d —2)/d denotes the
localization exponent, as defined by Rammal and
Toulouse. 'z In finite magnetic fields, the MR exhibits
a crossover between a quadratic dependence (AR/
R ) (H) —(b, R/R ) (0) —H at low fields (HJ ~2(($0) and a power-law behavior (b, R/R ) (H)—HI ~2 at larger fields (HE~2 && @o). We note that
for Euclidean structure (d= d= d) the known results
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@„/y„=4"[4+13(—,', )"]/17, (5)

at stage n of decimation and X~=~ (scaling regime).
The maximal modulations are obtained for reduced
fluxes $/@o corresponding to integer values of the re-
normalized flux. According to Eq. (5), @„is the same
for (Q, n) and ($/4, n+ I), and this leads to the ob-
served period of ln4. Another approach to this result
involves a careful study of the RG flow, which leads to
the following equation for hR/R:

(ER/R)(@/po) =
3 (/JR/R)(4qh/@o). (6)

Equation (6) has the same form as Eq. (1) and the
general solution can be written as

I«4/do)

where p denotes a periodic function, with period 1.
Equation (7) shows that q=—a/I. & governs just the
low-field cutoff and does not play any role in the self-
similar regime" where the predicted oseillations are
observed. It is important to notice that in Fig. 2, we
have plotted (b,R/R ) (0) —(AR/R ) (H) instead of
(hR/R ) (H). We note that this behavior is due again
to the singular self-similar edge of the spectrum of the
operator Q, which reflects the self-similarity of the
structure. Furthermore, there is no such oscillation at
zero magnetic field, as a function of temperature for
instance. Of course, the lack of exact self-similarity
can lead to the disappearance of the obtained periodic
oscillations.

are recovered, '3 in particular the logarithmic behavior
for 2D films where P =0.

The power-law behavior b, R/R —HP/2 is actually
the manifestation of the singular shape of the spec-
trum edge e(H) of the operator Q, at low magnetic
field3'ii' e(0) —e(H) —H+~ [e(0)=z=4]. Such a
behavior is reflected on the line T, (H) shown in Fig.
1 (see also Ref. 4). On the other hand, the RG calcu-
lation reproduces" this overall behavior, with
d=ln3/ln2, d=2ln3/ln5, as it should be. Periodic
modulations are superposed on the power law, with a
period ln4 in a log-log plot.

The physical origin of the oscillation can be traced
back to the fact that the considered structure exhibits a
dilation symmetry only under a discrete subgroup of
the dilation group. Indeed, at low fields, the magnetic
flux renormalizes as"

To summarize, we believe that the periodic correc-
tions to scaling reported in this Letter are the manifes-
tation of a very general phenomenon observed here
for the first time. Such corrections are associated in a
natural way with an exact RG transformation, which
generates a singular measure. In the present case, this
can also be seen on the spectral measure as well as the
spectrum (Cantor-type set) of the operator Q. The ex-
istence of such a RG transformation depends of course
on the validity of the weak localization theory. Thus
the observation of both the predicted power law and
the periodic corrections should be viewed as a strong
evidence for weak localization theory.
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