Have Quasinuclear $N\overline{N}$ Bound States Been Discovered?

Carl B. Dover

Brookhaven National Laboratory, Upton, New York 11973 (Received 19 June 1986)

It is suggested that a broad structure $X^0(1480)$ recently observed in the reaction $\bar{p}n \to \pi^- X^0 \to 3\pi^- 2\pi^+$ may be interpretable in terms of an unstable quasinuclear bound state of the (complex) nucleon-antinucleon $(N\bar{N})$ potential. The observed mass, production branching ratio, and preference for the $X^0 \to \rho^0 \rho^0$ rather than $\pi^+ \pi^-$ decay mode are consistent with a quantum-number assignment $J^{PC}(I^G) = 2^{++}(0^+)$. Prospects for finding the lower-lying $0^{++}(0^+)$ and $1^{--}(0^-)$ members of the expected natural-parity quasinuclear band are discussed.

PACS numbers: 14.40.Cs, 12.40.Qq, 13.25.+m, 13.75.Cs

It has long been recognized that the $N\overline{N}$ system offers in principle an ideal entrance channel for the production of new types of mesons, in addition to the usual quark-antiquark $(Q\overline{Q})$ configurations. These new mesons could include, for instance, quasinuclear (QN) bound states of the $N\overline{N}$ potential,¹ "baryonium" states of $Q^2\overline{Q}^2$ structure,² "hybrids," i.e., $Q\overline{Q}g$ mesons³ containing a dynamical gluon g, or glueballs.⁴ The search for new *narrow* mesons coupled to the $N\overline{N}$ system has been intense, but earlier evidence for the existence of such objects has not been confirmed in recent experiments⁵ with intense \overline{p} beams at LEAR (Low Energy Antiproton Ring at CERN).

Unless there is a topological selection rule⁶ suppressing direct decay of "baryonium" into mesons, one generally expects broad states. For instance, for $N\overline{N}$ quasinuclear mesons, the typical scale of width¹ is $\Gamma \approx 100$ MeV, although narrower structures may occur in particular cases.^{7,8} New mesons, if they are highly unstable, are generally difficult to extract in a convincing way from $N\overline{N}$ annihilation data. Even if one picks a particular pion multiplicity n, there will often be numerous quasi two-body (QTB) reactions $N\overline{N}$ $\rightarrow M_1 M_2$, leading directly to ordinary $s = \{\pi, \eta, \rho, \omega\}$ and $p = \{\epsilon, \delta, A_1, A_2, D, f, B, H\}$ mesons M_1 and M_2 . This "background" of QTB modes, interesting in its own right because of the connection between the underlying quark-gluon dynamics and observed selection rules,⁹ masks the production of new mesons X in reactions such as $N\overline{N} \rightarrow \pi X$ or γX .

To minimize the QTB and other backgrounds, one can choose the initial $N\overline{N}$ state and the particular final pion charge states in an optimum way. For instance, the \overline{pn} or \overline{np} initial states are more favorable in this regard than \overline{pp} , since we thereby restrict attention to entrance channel isospin I=1, and thus eliminate I=0QTB modes. If we then choose *n* even or odd, i.e., *G* parity = $(-)^n$, we select ${}^{2I+1}, {}^{2S+1}L_J = {}^{33}S_1$ or ${}^{31}S_0$ initial $N\overline{N}$ states, respectively. We here assume that annihilation takes place from L=0 states. Finally, we focus on annihilation modes containing the *minimum* number of π^{0} 's, since these contain the fewest QTB configurations. By explicit enumeration of QTB modes for each *n*, we have found that the reaction $\overline{pn} \rightarrow 3\pi^{-}2\pi^{+}$ is optimal for the study of new mesons X^{0} via the process $\overline{pn} \rightarrow \pi^{-}X^{0}$. Note that X^{0} can have isospin 0, 1, or 2. On the other hand, $\overline{pp} \rightarrow \pi^{\pm}X^{\mp}$ can only be used to produce isovector or isotensor mesons X, so that the expected deeply bound isoscalar $N\overline{N}$ states¹ will not be seen.

The reactions

$$\overline{p}d \rightarrow p_{s} + (\overline{p}n)$$

$$\downarrow \pi^{-} X^{0} \qquad (1)$$

$$\downarrow \pi^{+} \pi^{-} \cdot \pi^{+} \pi^{-} \pi^{0} \cdot 2\pi^{+} 2\pi^{-}$$

were recently studied by Bridges *et al.*¹⁰ A cut was made on the momentum of the recoiling proton p_s to separate out the "spectator" events. For each multiplicity, they form the *difference spectrum* $N(\pi^-)$ $-N(\pi^+)$, where $N(\pi^{\pm})$ is the number of events corresponding to inclusive π^{\pm} production. This helps to separate the "primary" π^- produced via $\bar{p}n$ $\rightarrow \pi^- X^0$ from the background of π^- 's arising from the decays of X^0 or other neutral mesons. (These produce the same π^+ and π^- spectra by *C* invariance.) Note that the difference technique does not totally eliminate contributions from modes $\bar{p}n \rightarrow M_1^- M_2^0$, if $M_1^- \neq \pi^-$, but such modes do not produce sharp peaking in the missing mass recoiling against a π^- . For $\bar{p}n \rightarrow 2\pi^-\pi^+$ and $3\pi^-2\pi^+$, respectively, the only QTB modes which conserve $J^{PC}(I^G)$, starting from the ³¹S₀ initial state, are

$$\overline{p}n \to \pi^{-}\rho^{0} (l_{f}=1), \pi^{-}\epsilon (l_{f}=0), \pi^{-}f (l_{f}=2)$$
$$\to \rho^{0}A_{1}^{-} (l_{f}=0,2), \rho^{0}A_{2}^{-} (l_{f}=2), \qquad (2)$$

where l_f is the meson-meson relative orbital angular momentum. Note that $\rho^0 A_2^-$ will be strongly suppressed because $l_f = 2$, and the available phase space is small. For $\bar{p}n \rightarrow 2\pi^- \pi^+ \pi^0$, numerous QTB modes contribute, and hence this channel is not as favorable for isolation of a new X^0 .

Bridges et al.¹⁰ have noticed a broad structure $X^0(1480)$ in the difference spectrum for $pn \rightarrow 3\pi^- 2\pi^+$. They were not able to explain it in conventional terms as a QTB or three-body process. They find a mass value $M_0 = 1477 \pm 5$ MeV, a width $\Gamma = 116 \pm 9$ MeV, a dominant decay mode $X^0(1480) \rightarrow \rho^0 \rho^0$, and a product branching ratio

$$B(\bar{p}n \to \pi^- X^0(1480)) B(X^0(1480) \to \rho^0 \rho^0) \approx 3.5\%$$

A quantum-number assignment $J^{PC}(I^G) = 2^{++}(0^+)$ is suggested¹¹ for the $X^0(1480)$. In this paper, we offer a plausible *interpretation of the* $X^0(1480)$ as the ${}^{13}P_2{}^{-13}F_2$ QN bound state of the NN system. It is argued that the observed mass, width, decay modes and production branching ratio for $X^0(1480)$ are reasonable in the context of an $N\overline{N}$ potential model, although an explanation in terms of the complicated dynamics of the 5π system or final-state interactions ($\rho\rho$ s-wave rescattering, for instance) may also be possible.

Theoretical spectra of $N\overline{N}$ bound states have been obtained by numerous authors.^{1,2,7,8} Although the absolute binding energies are very sensitive to the details of the short-range interaction, certain features of the level ordering are preserved for a wide class of one-boson-exchange potentials. As a result of the *coherent tensor potentials* arising from π , ρ , and ω exchange, the lowest-lying levels of a given J form an I=0 natural-parity band, with quantum numbers $0^{++}(0^{+}), 1^{--}(0^{-}), 2^{++}(0^{+})$, etc. The wave functions for these states are very close to the coherent mixture¹²

$$|\beta_J\rangle = [-J^{1/2}|L = J - 1\rangle + (J + 1)^{1/2}|L = J + 1\rangle]/(2J + 1)^{1/2}$$
(3)

which diagonalizes the tensor operator S_{12} . For $|\beta_J\rangle$, the same tensor potential operates for all J, so that the main mechanism for mass splitting ΔM is the centrifugal term $(J^2 + J + 2)/M_N r^2$ in the effective potential. This gives the approximate relation

$$\Delta M(2^+ - 1^-) \approx 2\Delta M(1^- - 0^+). \tag{4}$$

Annihilation will modify Eq. (4), but not in a qualitative way, according to the calculations of Niskanen and Green⁷ and Lacombe *et al.*⁸ If $X^0(1480)$ is identified as the 2⁺ state, then we anticipate the 1⁻ and 0⁺ states in the mass range 1100–1400 MeV/ c^2 . These will be more difficult to isolate: The 1⁻ lies in the same mass region as ordinary *p* mesons, and separating πX^0 from πA_2 , for instance, since $X^0(1^-)$ and A_2 have the same preferred $\pi \rho$ decay mode, would require a careful multichannel amplitude analysis. Some evidence for a broad structure near 1100 MeV/ c^2 , decaying into $\pi^+\pi^-$, and produced in the reaction $pn \rightarrow \rho^- X(1100)$, has been given by Daftari *et al.*¹³ If confirmed, this could be a candidate for a 0⁺⁺ (0⁺) state.

The $Q^2 \overline{Q}^2$ spectrum calculated by Jaffe² also displays a 0⁺⁺, 1⁻⁻, 2⁺⁺, etc., natural-parity band with I = 0, which enjoys maximal coupling to the $N\overline{N}$ channel. However, the 2⁺⁺ state is predicted to lie around 1960 MeV/ c^2 , above the $N\overline{N}$ threshold, and rather far from the X(1480). Possible 2⁺⁺ glueball¹⁴ and hybrid³ states also lie at higher mass. For $N\overline{N}$ potential models, on the other hand, the 2⁺⁺ (I=0) state usually lies far below the $N\overline{N}$ threshold^{1,7,8} in the region of X⁰(1480), a consequence of the very strong and attractive tensor force.^{1,12}

The production branching ratios of $N\overline{N}$ QN states X in the reactions $(p\overline{p})_{atom} \rightarrow \pi^{\pm} X^{\mp}, \pi^{0} X^{0}$, and γX^{0} were estimated by Dover, Richard, and Zabek.¹⁵ The results depend sensitively on the match between l_F and the available momentum q in the final state, as well as the isospin mixing in the $p\bar{p}$ atom. If we scale the results of Ref. 15 to the correct q, using a modified penetrability $(qR)^{l_F} \exp(-R^2q^2/4)$, we estimate branching ratios of 1%-10%, relative to the total annihilation, for the process $\bar{p}n \rightarrow \pi^- X^0$ (1480). This is comparable to the observed rate. Such branching ratios may seem large, but calculations^{15, 16} show that the $N\bar{N}$ atom finds it rather easy to emit a single pion and collapse to a QN $N\bar{N}$ state with tighter radial localization but the same quark content.

The final key point concerns the mesonic decay modes of the QN $N\overline{N}$ states. These are expected to follow the decay pattern of $N\overline{N}$ atomic states, except that the available energy has been reduced from $2m_N$. That is, strange-particle decay modes, such as $K\overline{K}$ or $K^*\overline{K}$, will be relatively rare, since the QN states, unlike the ϕ or f' mesons, for instance, have only small strange-quark admixtures. The nonstrange QTB decay modes available to the $2^{++}(0^+)$ meson $X^0(1480)$ are

$$X^{0}(1480) \rightarrow \begin{cases} \pi^{0}\pi^{0}, \ \pi^{+}\pi^{-}, \ \eta\eta \ (l_{f}=2), \\ \rho^{0}\rho^{0}, \ \rho^{+}\rho^{-}, \ \omega\omega \ (l_{f}=0,2), \\ \pi^{0}A_{1}^{0}, \ \pi^{\pm}A_{1}^{\mp} \ (l_{f}=1,3). \end{cases}$$
(5)

The πA_1 ($l_f = 1$) modes will be kinematically suppressed, whereas the $\eta\eta$ and $\omega\omega$ modes contribute to $\bar{p}n \rightarrow \pi^- X^0$ annihilation channels of multiplicity seven containing two π^{0} 's, which have not been isolated experimentally. The decay mode $X^0(1480) \rightarrow \pi^+\pi^-$ should have been seen, however. We propose that the

 $X^0(1480)$ and the f'_2 seen by Gray et al.¹⁷ in the channel $pn \to \pi^- f'_2 \to \pi^- \pi^+ \pi^-$ are one and the same state. The f'_2 appears as a peak in the $\pi^+ \pi^-$ mass and also in $pp \to \pi^0 f'_2$, $f'_2 \to 2\pi^0$, with comparable mass and width to the $X^0(1480)$. The decay $f'_2 \to K^+ K^-$ was not seen, consistent with the observed suppression¹⁸ of the $K^+ K^- / \pi^+ \pi^-$ ratio in pp annihilation from L = 1 states. If f'_2 were a glueball, on the other hand, one would expect to see a prominent $K^+ K^-$ mode. The claimed branching ratio¹⁷ $B(pn \to \pi^- f'_2)B(f'_2 \to \pi\pi) \approx 0.4\%$ is considerably smaller than than for $X^0(1480)$ via the $\rho\rho$ decay mode, suggesting that

$$\Gamma(X^0(1480) \to \rho\rho) > \Gamma(X^0(1480) \to \pi\pi).$$
 (6)

The preference for the $\rho\rho$ decay mode can be qualitatively understood in a microscopic quark model¹⁹ for QTB decays of the $N\overline{N}$ system at rest, where a suppression of decays of the type $N\overline{N}(L=1) \rightarrow ss(l_f=2)$ is found, of which $N\overline{N}(^{13}P_2) \rightarrow \pi\pi(l_f=2)$ is a special case. A suppression of this transition was also found by Kohno and Weise²⁰ in a different model.

In summary, we suggest that the $X^0(1480)$ peak seen by Bridges et al.¹⁰ may be the first example of the long sought-after $N\overline{N}$ quasi-nuclear states. The production branching ratio, mass, width, quantumnumber assignment $[2^{++}(0^{+})]$, and dominant decay mode $[\rho\rho \text{ over } \pi\pi \text{ or } K\overline{K}]$ is consistent with theoretical predictions if $X^0(1480)$ is a ${}^{13}P_2{}^{-13}F_2$ NN bound state. This object bears a special relationship to the NN entrance channel, since its production in the reaction $(N\overline{N})_{atom} \rightarrow \pi + (N\overline{N})_{QN}$ is optimal. It will not be easily seen in other channels, for instance $\pi + N \rightarrow X^0(1480) + N$, since here the production of ordinary $Q\overline{Q}$ mesons prevails. A structure near the $\rho\rho$ threshold has also been seen²¹ in $\gamma \gamma \rightarrow \rho^0 \rho^0$. The partial-wave analysis of Althoff *et al.*²¹ suggests mostly 0^{++} strength below 1700 MeV/ c^2 and 2^{++} at higher mass. This structure, which has been interpreted²² in terms of interfering $I = 0.2 \ O^2 \overline{O}^2$ resonances, may be related to the $X^0(1480)$.

The $2^{++}(0^{+})$ $N\overline{N}$ state should be accompanied by broad $1^{--}(0^{-})$ and $0^{++}(0^{+})$ structures at lower mass, the latter being the ground state of the I=0, natural-parity $N\overline{N}$ quasinuclear band. In contrast to ${}^{13}P_2{}^{-13}F_2$, the ${}^{13}P_0$ state would prefer to decay¹⁹ into $\pi\pi(l_f=0)$ rather than $\rho\rho$. This mass region is complicated, since other $0^{++}(0^{+})$ structures have been observed.²³

Near the $N\overline{N}$ threshold, one anticipates the existence of further broad $N\overline{N}$ or $Q^2\overline{Q}^2$ objects. If these lie in the continuum, they are best looked for in particular exclusive two-body channels rather than in total cross sections. Just below threshold, the reaction $\overline{p}p \rightarrow \gamma X^0$ is an appropriate tool in the search for broad structures X, but only if the charged decay products of X^0 are studied in coincidence with the γ . The inclusive γ spectrum is useful in the search for narrow states, but not for new broad ones. The study of the reaction $\overline{np} \rightarrow \pi^+ X^0(1480) \rightarrow 3\pi^+ 2\pi^-$ at very low momentum is recommended, since one thus evades the question of meson-nucleon final-state interactions which arises for $\overline{pd} \rightarrow p_s \pi^- X^0$.

The $N\overline{N}$ system offers a unique window for the study of new mesons with quark-antiquark structure more complicated than $Q\overline{Q}$. The study of annihilation processes, from initial states of different L, should be vigorously pursued.

I would like to acknowledge useful discussions with Ted Kalogeropoulos on the experimental data. This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-76CH00016.

¹I. S. Shapiro, Phys. Rep. C **35**, 129 (1978); W. Buck, C. B. Dover, and J. M. Richard, Ann. Phys. (N.Y.) **121**, 47 (1979); C. B. Dover and J. M. Richard, Ann. Phys. (N.Y.) **121**, 70 (1979).

²R. L. Jaffe, Phys. Rev. D 17, 1445 (1978).

³F. E. Close, Nucl. Phys. A416, 55 (1984); M. Chanowitz and S. Sharpe, Phys. Lett. 132B, 413 (1983); N. Isgur, R. Kokoski, and J. Paton, Phys. Rev. Lett. 54, 869 (1985).

⁴T. Barnes, in *Proceedings of the International School of Ex*otic Atoms, Erice, 1984, edited by P. Dalpiaz et al. (Plenum, New York, 1985), p. 191; P. M. Fishbane and S. Meshkov, Comments Nucl. Part. Phys. 13, 325 (1984).

 ${}^{5}G$. A. Smith, Penn State Report No. PSU HEP/86/01, 1986 (unpublished).

⁶G. C. Rossi and G. Veneziano, Phys. Rep. **63**, 149 (1980).

⁷J. A. Niskanen and A. M. Green, Nucl. Phys. **A431**, 593 (1984).

⁸M. Lacombe, B. Loiseau, B. Moussallam, and R. Vinh Mau, Phys. Rev. C **29**, 1800 (1984); R. Vinh Mau, in *Medium Energy Nucleon and Antinucleon Scattering*, edited by H. V. von Geramb, Lecture Notes in Physics, Vol. 243 (Springer-Verlag, Berlin, 1985), p. 22 (Table 7). The $2^{++}(0^+)$, $N\overline{N}$ bound state is predicted at 1510 MeV, with a width $\Gamma \approx 65$ MeV.

⁹C. B. Dover, in Ref. 8, p. 80.

¹⁰D. Bridges et al., Phys. Rev. Lett. 56, 211, 215 (1986).

¹¹D. Bridges, I. Daftari, and T. E. Kalogeropoulos, to be published.

¹²C. B. Dover and J. M. Richard, Phys. Rev. D 17, 1770 (1978).

 13 I. Daftari, L. Gray, T. E. Kalogeropoulos, and J. Roy, to be published.

¹⁴A. Etkin et al., Phys. Lett. 165B, 217 (1985).

¹⁵C. B. Dover, J. M. Richard, and M. C. Zabek, Ann. Phys. (N.Y.) **130**, 70 (1980).

¹⁶A. M. Green, M. E. Sainio, and J. M. Richard, J. Phys. G 6, 437 (1980).

¹⁷L. Gray *et al.*, Phys. Rev. D **27**, 307 (1983). In this paper, a mass $M = 1527 \pm 5$ MeV and width $\Gamma = 101 \pm 13$ MeV

are given for the f'_2 , whereas in Ref. 10 the values are $M = 1522 \pm 7$ MeV and $\Gamma = 59 \pm 12$ MeV. This would appear to preclude the identification of f'_2 and $X^0(1480)$ as the same state. However, these values of $\{M, \Gamma\}$ are sensitive to the assumed background in the f'_2 region due to the $\pi^- f$ channel. An effective width of 262 MeV rather than the observed width of 180 MeV was used for the f in Ref. 10, leading to an upward shift of the f'_2 mass relative to the observed peak at 1480 MeV in the $\pi^+\pi^-$ mass spectrum.

¹⁸C. Amsler, in *Quark Structure of Matter*, edited by M. Jacob and K. Winter (World Scientific, Singapore, 1986). A preliminary value of the $K^+K^-/\pi^+\pi^-$ ratio in $\overline{p}p$ annihilation is given as 0.07 ±0.02 for tagged L = 1 initial states.

A similar suppression of the ${}^{13}P_2$ - ${}^{13}F_2$ QN bound state decay into K^+K^- is expected.

¹⁹C. B. Dover, P. M. Fishbane, and S. Furui, to be published.

²⁰M. Kohno and W. Weise, Nucl. Phys. A454, 429 (1986).

²¹M. Althoff *et al.*, Z. Phys. C **16**, 13 (1982); H. J. Behrend *et al.*, Z. Phys. C **21**, 205 (1984).

²²B. A. Li and K. F. Liu, Phys. Rev. Lett. **51**, 1510 (1983); N. N. Achasov, S. A. Devyanin, and G. N. Shestakov, Z. Phys. C **27**, 99 (1985).

²³A. Etkin *et al.*, Phys. Rev. D **25**, 2446 (1982); K. L. Au, D. Morgan, and M. R. Pennington, Phys. Lett. **167B**, 229 (1986).