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An infinite-dimensional representation of SU (2,2/1) can combine meson and baryon trajectories
~ith daughters into an infinite supermultiplet.
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The equality of the slopes for the meson and baryon
Regge trajectories is one of the most interesting prob-
lems in hadron spectroscopy. It has been suggested
that this problem can be studied by use of supersym-
metries. This is based on the belief that inside the ex-
cited baryon QCD leads to the formation of diquarks
which are well separated from the remaining quark. 2

In nuclear physics a similar picture led to the intro-
duction of spectrum supersymmetries. 3 The micro-
scopic interpretation is that the additional nucleon of
an even-odd nucleus which is added to the core of an
even-even nucleus couples only weakly. This results
in similar level structure and level spacing for even-
odd and even-even nuclei. The collective models for
these phenomena are dynamical supersymmetries
based on U(6/N). 3

The similarity in the microscopic pictures of hadrons
and nuclei suggests a similarity for the collective
models. A collective model for hadrons should, there-
fore, have a relativistic spectrum supersymmetry
which combines baryons and mesons into supermultip-
lets. To describe the —in principle —infinite number
of resonances on a Regge trajectory the supermultiplet
must be infinite.

We want to start with the superconformal group
SU(2, 2/1), which was also suggested in Ref. I and
whose infinite-dimensional representations are fairly
well known. ~ It has Osp(1, 4) D SO(3,2) 0SO(3)s
8 SO(2)r, and SU(1,1/1) DOsp(1, 2) DSO(2, 1)
DSO(2)r, as different subalgebras. The generators of
SU(2, 2/1) are denoteds by S,a (a, 6=0, 1, 2, 3, 5, 6),
R, and T, S, n=1, 2. S„„, I „=S„6,p, =0, 1,2, 3,
and Q = —,

' ( T + S ) are the generators of the sub-

supergroup Osp(1, 4); S&6, SM, and So6=Io are the
generators of $0(2, 1). The Osp(1, 2) chain has been
suggested as spectrum supergroup for the nonrelativis-
tic harmonic oscillator and other nonrelativistic models
with spin-orbit coupling. 6 The SO(3,2) chain has been
suggested as spectrum generating group for the rela-
tivistic rotating vibrator (a mutation of the relativistic
string with noncanonical intrinsic position and
momentum). SU(2, 2/1) is the smallest supergroup
that can combine both.

The properties of the representations of a noncom-
pact group or supergroup which are most important for
physical applications are the reduction with respect to
the (maximal) compact subgroup and the matrix ele-
ments of the group generators. The former describes
the spectrum and the latter transition amplitudes.
Here we will discuss the spectrum, which is best illus-
trated by the weight diagram (or K type). A weight di-
agram displays which irreducible representations
(irreps) of the (maximal) compact subgroup
SO(4)s s„S SO(2)r, +SO(3)s. S SO(2)r occur in

an irrep of SU(2, 2/1)DOsp(1, 4). We are here only
interested in a special class of irreps of SU(2, 2/1), the
so-called positive-energy„massless representations,
which are conventionally denoted4 by Ds ( s + I;s,
0;s+ 1) where s is a number which can take any in-
teger or half-integer value: s=0, —,', I, —', , . . . . The
only important aspect in this notation is that these
representations are characterized by the value of s (the
subscript S stands for supergroup). The physical
meaning of this value is obtained from the reduction
of this irrep with respect to the sub(super) group chain
SU(2, 2/I) DOsp(1, 4) DSO(3,2), which is given by

Ds(s+ I;s, 0;s+1) Ds(s+ l, s) D(s+ l,s) D(s+3/2, s+ I/2)
Osp(1, 4)

where Ds(s+ I,s) denotes a Positive-energy rePresentation of OsP(1,4) and D(jo+ I,jo) denote the irrePs of
SO(3,2) that have been used for the quantal relativistic oscillator in Ref. 7. There jo has been interpreted as the
total constituent spin; i.e., if the extended relativistic object described by Ds(s+ I;s, 0;s+1) is considered to con-
sist of two and three quarks then Jo= s+ 2 and jo= s are the sums of the spins of the quarks. We, therefore,
choose s= —, in (I) and obtain a representation which describes baryon resonances (jo= —, ) and positive-CP,
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FIG. 1. Weight diagram of an Osp(1, 4) representation

which has been modified into a mass-level diagram. On the
horizontal axis we have plotted j, whose physical interpreta-
tion is the spin of the resonances. If the levels for a fixed
value of v had been plotted on a horizontal parallel to the j
axis then this would be the ~eight diagram of the represen-
tation D(T,T) 6 D(2, 1). Instead we have plotted the lev-

el with a vertical coordinate of rn —mo, where the value of
2 -2

mo (baryons) —mo (meson) has been fixed such that the
ground-state levels coincide, and m has been determined
from a fit of the nucleon resonances and of the Y=O,
CP = + 1, j~= normal meson resonances by the mass for-
mula (3). v is the new vibrational quantum number which
has been assigned to the resonance: v is the eigenvalue
(I o

—T) for baryons; v is the eigenvalue (Io —I) for
mesons. Not shown in this figure is the prediction of
m=2758 MeV for j=7 [experimetttai M(2750)] and of
m = 2791 MeV for j= ~+ [experimental Aj'(2700) ].

normal- jp meson resonances (jo = 1) by one irrep:

Ds( —', ; —,', 0; —,
' ) —D( —', , —,

' ) 6 D(2, 1). (2)
so(3,2)

Figure 1 is the weight diagram of the irrep Ds(
—,', 0;—', ), except that it has been distorted in order to
illustrate the results that will be discussed below. Each
level represents a weight (p„,j) where p. is the eigen-
value of I o and j(j+ 1) is the eigenvalue of S2. Each
level, therefore, belongs to a state with angular
momentum j and principal quantum number p, , which
according to Ref. 7 will be interpreted as vibrational

H=. (P„P - -tX-', (g.,g."I- o) (3)

(v is the Lagrange multiplier; lj'~' and mo are system
parameters). In (3) g = D &(P„)Q& where D(P~) is
an operator matrix and the operator P is defined
p = P„M ', M2=P Pv; D(p) is the two-dimen-
sional ( 2, 0) representation of the inverse Lorentz
boost L, (p):p„(m, 0, 0, 0). In the full representa-
tion p, is the eigenvalue of P I" and j(j+1) is the
eigenvalue of ( —~„II )

P"S&, and to each level (p„j) corresponds
an irreducible representation of the Poincare group
with spin j and additional quantum number p, .' The
SU(2, 2/1) operators describe only the intrinsic dynam-

quantum number v =p, —1 for mesons and v = p, —
—,
1

for baryons. Figure 1 would be exactly the weight dia-
gram of Ds( —', ; —,', 0; —,

' ) if we had plotted p, and not v

versus jand if all levels with the same value of p, were
plotted on the same horizontal line.

The representations (1) have the remarkable proper-
ty that the Casimir operators C (SO(3))=j(j+1)
and C (SO(2, 1))= q(q —1) have the same value, so
that q =j+ 1; therefore j also labels an irrep of
SO(2, 1). Thus the column of levels with a fixed value
for j in Fig. 1 belongs to an irrep D+ (q) of SO(2, 1).
As two irreps, D+(q) 8 D+(q+ —', ), combine into
an irrep of Osp(2, 2) DOsp(1, 2), any two adjacent col-
umns in Fig. 1 form a weight diagram of Osp(2, 2).
Figure 1 is thus an extension of Fig. 2 of Fubini and
Rabinovici —the weight diagram of Osp(2, 2)—which
includes all integer and half-integer values of j, not
just j= I and j= I+ —,

' for a fixed value of I. These
weight diagrams of Osp(2, 2) have been used6 to
describe the spectrum of a radial supersymmetric oscil-
lator. The representation (2) thus provides a relativis-
tic generalization of the supersymmetric oscillator of
Ref. 6 and a supersymmetric extension of the relativis-
tic oscillator of Ref. 7.

The physical interpretation of the SU(2, 2/1) as rela-
tivistic spectrum supersymmetry is derived from the
physical interpretation of the SO(3,2) subalgebra of
Ref. 7. This interpretation is related to but not identi-
cal with the conventional interpretation; in particular
neither I o+So5 nor I'o is the energy. We use con-
straint Hamiltonian quantum mechanics. In addition
to the SU(2, 2/1) generators the Poincare group gen-
erators P„and J„„=M„„+S„„aredefined'o and only
through the constraint relation is the energy (at rest)
related to I'o.'

CPo=n'-'I o+ mo2 = X 2 (Q,g' I+mo

where the symbol = means equal by constraint. This
follows from the relativistic Hamiltonian, which for
the simplest case ("relativistic harmonic oscillator" ) is
postulated as
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ics of an extended relativistic object.
The simple Hamiltonian (3) will lead —through its

constraint —to the mass formula

m2(p„,j)=u' 'p, + ma2,

other Hamiltonians will lead to other mass formulas.
We will test the mass formula

m = mo + o. ' 'p, + A. j (j + 1), (4)

where m2 is the mass square of the hadron that has
been assigned to the level (p„j).

The empirical parameters I/a', X2, and ma have
been determined by fits to the meson and nucleon
spectrum separately. We have done this for many ha-
dron towers and will report here only the result for the
p, ~, and nucleon towers. The hadron resonances
usually assigned to the p, cu, and nucleon trajectories
have been assigned in Fig. 1 to the levels (p„,j) with

p, =j+1 (corresponding to the yrast states of nuclear
physics). The levels with p, & j+1 (higher vibrational
excitations) represent the daughters. Note that there
is no j=0 level in our representation (2) which, as
usual, would have caused trouble. The mass values
with error bars drawn in Fig. 1 are the resonances
which have been included in the fit. In addition other
resonances have been reported for which the evidence
is weak and which have therefore not been used in the
fit."

It turned out that the values for I/a' and X2 for the
baryon and meson towers agreed within error. There-
fore a joint fit to the meson and nucleon resonances
was performed which gave the values

I/n'= 1.03 +0.036 GeV2,

),'=0015+0.008 GeV'

with x'/nD = 9.9/28.
The result shows that the rotator contributions (pro-

portional to h. z) are small and that (3) provides a good
approximation. And it shows that the slope is indeed
the same for the meson and nucleon trajectories and
their daughters. There is no representation of
SU(2,2/1) whose weight diagram contains only the tra-
jectory without daughters. But there is one representa-
tion of Osp(1, 4) which could do this. It also contains,
however, a j=0 state.

In this Letter we have proposed a relativistic gen-
eralization of methods that have previously been used
in molecular physics. An extension of these mathe-
matical methods into the relativistic domain and their
application to hadron physics naturally suggests a
transfer of the underlying physical ideas: When one

analyzes molecular and nuclear spectra and structure
in terms of rotators and oscillators, the notion of con-
stituents (electrons, nucleons) becomes unimportant;
the "parts" are the collective motions. The Regge re-
currences and the daughters are —according to our
model —vibrational excitations [with weak angular
momentum dependence (rotational bands)]. The only
time we had to refer to quarks was when we chose the
representations (value of s), similar to the situation in
nuclear physics. Though molecules, nuclei, and ha-
drons are made of completely different constituents,
similar features (vibrational excitations with rotational
bands) appear again and again, because not the con-
stituents but the motions determine these features.
The method which best displays this unity in physics is
the one that uses groups. Supergroups occur when
states of integer and half-integer spin are to be com-
pared. The equality of the slopes for the meson and
baryon trajectories can be explained as a manifestation
of the spectrum supersymmetry given by SU(2, 2/1).

&S. Catto and F. Gursey, Lett. Nuovo Cimento 35, 241
(1982); I. Bars and H. C. Tze, private communication.

2The flavor-independent QCD forces between the quark
and the diquark for baryons and between the quark and anti-
quark for mesons are essentially the same; R. L. Jaffe, Phys.
Rev. D 15, 281 (1977); K. Johnson and C. B. Thorn, Phys.
Rev. D 13, 1934 (1976); T. Eguchi, Phys. Lett. 598, 457
(1975).

3A. B. Balantekin, K. Bars, and F. Iachello, Phys. Rev.
Lett. 47, 19 (1981); H.-Z. Sun, M. Vallieres, D. H. Feng,
R. Gilmore, and R. F. Casten, Phys. Rev. C 29, 352 (1984).
A similar kind of evidence for supersymmetry in atomic
physics has recently been reported by V. A. Kostelecky and
M. M. Nieto, Phys. Rev. Lett. 53, 2285 (1984).

4V. K. Dobrev and V. B. Petkova, Phys. Lett. 162$, 127
(1985); M. Flato and C. Fronsdal, Lett. Math. Phys. 8, 159
(1984).

sFor SU(2, 2/1) we use the conventions of M. F. Sohnius,
Phys. Rep. 128, 182 (1985), except that M,b there is called
S,~ here, Q there is called T here, and P„—= M»+M„6
there has nothing to do with the P„and M„„here, which are
defined by A. Bohm, M. Loewe, and P. Magnollay, Phys.
Rev. D 32, 791 (1985), and Phys. Rev. Lett. 53, 2292
(1984). We use the notation of these latter papers for the
even part.

6E. O'Hoker and L. Vinet, Commun. Math. Phys. 97, 391
(1985); A. B. Balantekin, Ann. Phys. (N.Y.) 164, 277
(1985).

78ohm, Loewe, and Magnollay, Ref. 5.
sC. Fronsdal, Phys. Rev. D 26, 1988 (1982); ~. Heiden-

reich, Phys. Lett. 1108, 461 (1982); P. Breitenlohner and
D. Z. Freedman, Ann. Phys. (N.Y.) 144, 249 (1982); D. Z.
Freedman and H. Nicolai, Nucl. Phys. 8237, 342 (1984).

S. Fubini and E. Rabinovici, Nucl. Phys. B245, 17
(1984).



VoLUME 57, NUMBER 10 PHYSICAL REVIEW LETTERS 8 SEpTEMmR 1986

~OThe construction of the representation and the meaning
of the splitting J„„=M„„+S„„hasbeen described in full de-
tail for the cases D(T, O) and D(1,T) in A. Bohm,
M. Loewe, L. C. Biedenharn, and H. van Dam, Phys. Rev.
D 2$, 3032 (1983).
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