VOLUME 57, NUMBER 10

PHYSICAL REVIEW LETTERS

8 SEPTEMBER 1986

Derivative Expansion for the One-Loop Effective Actions with Internal Symmetry

Lai-Him Chan

Department of Physics and Astronomy,® Louisiana State University, Baton Rouge, Louisiana 70803, and
Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 21 April 1986)

A simple systematic method is presented for the evaluation of the derivative expansion of the
functional determinant with covariant differential operators, space-time—dependent background
fields, and internal symmetry. The results are directly applicable to the one-loop perturbative
effective-action expansion for bosons and fermions. Derivative expansions up to four-derivative
terms for Trin[ — 12+ U (X )] and the effective action of the SO(N) linear o model are calculated.
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Recently, there has been increasing interest in effec-
tive field theories with higher-derivative couplings.
Examples are the ordinary and supersymmetric non-
linear o model, the strongly interacting heavy Higgs
sector of the standard model, skyrmion physics, and
vacuum tunneling. This enhances the urgency to
solve the important problem of developing a simple
systematic procedure for the evaluation of the deriva-
tive expansion for the effective action and the operator
expansion. A recent series of papers has taken the
first step toward this goal.!"® The purpose of this pa-
per is to present the best possible method applicable to
any model which may contain internal symmetry,
derivative couplings, gauge fields, and other back-
ground fields.

The objective is to incorporate the short-distance ef-
fects of the unobservable fields into an effective action
of observable fields. As suggested in Ref. 1, an effi-
cient way to accomplish this objective is to integrate
out the unobservable quantum degree of freedom per-
turbatively. One can make use of the finite translation
property to carry out the derivative expansion in such
a way that the quantum corrections can be calculated
in momentum space with use of modified Feynman
propagators while the space-time-dependent observ-
able background fields are kept intact in the configura-
tion space for the final expression of the effective ac-
tion. However, because of the short-distance singular-
ity of the field theory, the expansion cannot be per-
formed in a straightforward manner, but rather
through an implicit regularization scheme. It is neces-
sary to functionally differentiate the trace logarithm
function before the expansion and subsequently undo
it by a functional integration.! Other regularization
schemes do not simplify the procedures substantial-
ly.2* Moreover, the direct generalization of this
method to include covariant derivative couplings and
internal symmetry is rather complicated.* I report in
this paper a novel method which would retain all the
advantages of the previous method and at the same
time eliminate these problems. Since the main idea
can be naturally generalized to high-order perturbation
calculations, this presentation will be limited to the
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one-loop correction. After a general description of the
method, I shall apply it to calculate the derivative ex-
pansions of Trin[ —IT2+ U(X)] and the effective ac-
tion of the linear SO(N) o model.

The one-loop contribution to the effective action has
the general form’

TrinG~1(11,,,U(X)), 6))

where U(X) represents a set of background fields and
is a matrix in the coordinate space, internal symmetry
space, and spin space. (I,);=38,P,— Vi (X)f is
the generalized momentum and V2 are the gauge
fields while #j are the generators of the gauge group.
The coordinate matrix elements are (x|U;(X)|y)
=U;(x)82(x—y) and (x|P*|y)=— ia,‘:aﬂ(x~y).
The calculation will be performed in the D-
dimensional Euclidean space.

The essential ingredient of this calculation is the
nonvanishing ~ commutator  [IL,,X,1=[P,.X,]=
—id,,. The covariant derivatives defined by
2,U(X) = ill,, U(X)], F,,(X)=— i[ﬂ,,,ﬂ,,], and
their subsequent covariant derivatives 0,0 (X)
= i[II,,0 (X)] are functions of X only. Therefore, if
one can use the cyclic permutation property of the
trace operation and express TrinG~! as the trace of a
function of covariant derivatives then

TrlnG‘l=Trf(X)=dex(y|f(X)|x> )= x

= J @®x 1(x)82(0).
The presence of the infinite factor 82(0) implies that
some kind of regularization must be used to provide a
natural cancellation of the factor 82(0) to yield a finite
result. As described briefly above there are usually
unwanted complications associated with any regulariza-
tion scheme. However, in this case there is a natural
and physical averaging process already present in any
loop calculation which would provide such service with
no additional cost, namely the average over the inter-
nal loop momentum of the Feynman graph. The cru-
cial development of this work is the recognition that
this average procedure can be implemented at the very
beginning stage in the presence of the background
fields. The advantages for doing so will be apparent
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later. where
Equation (1) is invariant under a finite momentum X)) =f dPp/(2m)P= v /(27)P
translation, i

is exactly the infinite factor required for the regulariza-

TrinG~ (11, U(X)) tion to work. The expression in Eq. (3) is the generat-

. B L ing functional for the n-point vertex functions. p, is

=Tre? ¥InG~' (11, U(X)) e~ #"* the loop momentum while II, carries the momentum
of the external fields.

In addition to fulfilling the regularization function,
the introduction of the momentum integration without
The arbitrary momentum p, can be averaged over the djsturbing the full trace operation offers the needed
entire momentum space, freedom for manipulations, such as cyclic permuta-
tions of the operators and integrations by parts, in or-
der to bring TrinG~! into the trace of a function of
D the covariant derivatives in the covariant derivative
— dJ—Tr InG~'(I, + p,, U(X)), (3) expansion. The procedure for the covariant derivative

82(0)Y (2)P expansion becomes exceedingly simple. First, one ex-

—  pands Eq. (3) in a power series of IT,,

=TrinG= (I, + p,, U(X)). @)

TrinG~'(I1,,U(X))

1 (_d% |
52(0) Y (2m)?|

TrinG~'(I1,,U) = TrinG~'(p,,U(X))

10 3 L= 6 UG W+, V) = G, UNIY, @)

n=1

which can be manipulated into functions of covariant ‘
derivatives with no other isolated II, operator. The and
trace can then be evaluated easily in the coordinate

-1 —A-1 2 .
space to give the final result. G (H"+p“’U(X)) AT +IP+2p 10, ®)

Practically all boson-loop and fermion-loop contri- with
butions excluding the anomaly contribution can be cast
into the general form AN X)) =p*+ U(X) =G (p,, U(X)). M
G- I(IL,U(X)) =112+ U(X) (5) For a second-order operator, it is more convenient to
“l

J  carry out the power expansion in two steps:

2 _ 1 d°p 2 2 2)-1 )
Trin(IT2+ U) 55(0) Y (2m)P . Tr{in(p?2 + U) +In(1 + A1) +1In[14 (1 +A0%) ~1A2p - 1T ). (8)

For the second term, a unity factor 1=(1/D)(9/ ap“) Py can be inserted into the integrand and an integration by
parts yields (2/D) p?(1 + AIT?) ~'A2[12. The expansion of the third term gives

- i-L[“(1+AH2)‘1A2p-H]".

n=1"
Performing the angular average and including terms through IT*, one obtains
1 d’p 2 2
2 = 2 + 2 2 [AT2 — ATI* _ £ 2 2A2[12 — 2ATI2ATI*
Trin(IT?+ U) 52(0) (2#)DTr In(p?+ U) P [A%IT? — ATI*ATL, ] P (ATI°A’TI ATT*ATI*ATL,)
4 4 v 14
— P 2AILATI*AIL AL + AIL AIL ATI*AIT ]} (9)
DD+ 7 Al s

It is not difficult to recognize that Tr[AXMI?—AIMF*AIL,]= —+ Trl1*, A=+ Tr(D*A)2. With the identity
p*=11/(D+2)1(8/3p,) (p,p?) and an integration by parts, the two O (IT*) terms can be combined ,

4 SATE + A2T2AZ[2 — 2A2 2 2 2 -
D(D+2) P Tr[2A°TIPATI? + ATTPATI? — 2A [1*AIL, AT — 2AT1* AT, ATT® — 2ATT* AT, A°TI

+2(AI*AIL,)? + (ATI*AITY)?].  (10)

Making full use of the cyclic permutation freedom and with some algebraic manipulation, one can express this
O(I1*) contribution in terms of the commutators of I1,, or the covariant derivatives. It becomes straightforward to
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take the trace in the coordinate space and complete the calculation. Returning to the Minkowski space but keeping
the momentum explicitly in Euclidean space we have the final result

Trin( -2+ U(X))

—D(—Ijﬁ—)pg{zm(mmm[(:om)(:am)}z

—2[(D*A) (D ,0) 12— PPAYF, A2 —4iPA(D,A)A(D,A) )}, (11)

dPpg 1
—i(. 2 2
lfd xf 3m)D tr{lnlpg+ U(x)] Dp,;(i)”A)2

where A(x)=1/[p#+ U(x)]. The trace tr is for the

internal symmetry and spin spaces only. cently been calculated by Cheyette? using a slightly
In D=4 dimensions, the first term gives the well- modified method of Ref. 1 and by Zuk.> However, the

known contribution to the effective potential and is mg — oo limit of these terms is trivial.

quadratically divergent."® We shall use dimensional The SO(N) linear o model Lagrangean is

regularization since the quadratically divergent contri- 1 )
bution can always be recovered by applying to the L(®)=7(8,8)*— 7m’®*— (1/4)\ (@)’ +e- @,
result other regularization procedures such as de- 12)
scribed in Ref. 4. The O(F2,) term is logarithmically

divergent. All other terms in the derivative expansion where the last term is the symmetry-breaking term
are finite. In the absence of any internal symmetry  which would not contribute in this calculation. The ef-
and gauge field, Eq. (11) reduces to the correct result fective action is given by’

of Refs. 1 and 2.

If Uis not a multiple of the unit matrix or does not fd"x,.[ eir(P)
transform as a singlet under finite symmetry group,
then U has more than one distinct eigenvalue U,(x) =fd“x,£ (@) + +iTrin(= P2+ U(X)). (13)
and it does not commute with D, U, F,,, or other .
higher covariant derivatives. Therefore, with the ex- The matrix elements of U are most conveniently ex-
ception of the first term in Eq. (11), it will not be pos- pressed in terms of the SO(N) spherical variables
sible to combine all factors of A into a single power to @ =|®| = (®)"2and ¢ =®/|®| such that ¢?=1,
perform the momentum integration in a trivial (x| Uul y)
manner. It is necessary to project out the eigenmodes
A=73,A,P, and then collect various factors of A, for =lu ()P j+ur(a) P J18°(x~y), (14)
the momentum integration. It is important to point where ? f=¢,¢, and P [=58,—¢ b, are the longi-
out that no other method including the proper-time  ydinal and the transverse projection operators with
heat kernel method in the present form can give the multiplicities n, =TrPL=1 and ny=TrPT=N-1,
correct treatment for models with nondegenerate  respectively. The corresponding eigenvalues of Uare
eigenmodes.’

For the purpose of isolating the divergent contribu- u(o)=m*+3ra?, ur(o)=m*++ra2. (15)

tion one can safely ignore the noncommutivity of U

with the covariant derivatives since the commutator  Similarly, we can express the propagation function as

[A,F,,1=AlF,,,U]A contains an extra covergent fac- A=A (a)PL+A(o)PT (16)
tor. Therefore, the momentum integration can be per- with
formed easily. The logarthmically divergent term is

given by Ap(a)=1/[p*+u (a)], Ap(a)=1/[p*+ ur(a)].

i/ (4m)21 (/) [ 12— + F21, The effective I_,a.grangean. can be obtaineq by substitut-
ing these explicit forms into Eq. (11) with the gauge

which is identical to the well-known result of ‘t fields set equal to zero and combining the result with

Hooft.” Eq. (13)

We shall use the SO(N) linear o model as an exam- ’
ple to illustrate the method. The effective Lagrangean Log=L (D) +Lg(u) +(N—=1)Ls(up) + L p,
of this model is particularly interesting because it can (17)
be used to study the transition to the nonlinear o
model at my — co. The two-derivative terms have re-  where £ (®) is the Lagrangean in Eq. (12) and can be

] expressed in terms of the new variables o and ¢,

L(D)=50%8,0)++(3,0)2— s m?c?— (1/4)\o* + € do. (18)
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.L s(u) is the one-loop correction for the neutral scalar field as calculated in Refs. 1 and 2. In four dimensions, it

is given by

L g(u)= 1—[u2[2-—lni

4(47)? € m?

++u ' Qu)+ u2(%u)r— u3Qu) (%) + ru~*Qu)dt. (19)

L ), represents the contribution from two distinct eigenvalues #; and uy propagating in the same loop and is finite

in four dimensions,

dD
L y= (_;_)\)Zf T;r%{%pngzA%U4(a¢)2

2 4
Db+

APAF(3AE-AP)0* (9,0 - 3#¢)? +4A7A30% (3,6 - 0,4)?

+2A30304(8%¢)2 + 28, A 1(Ar—3A,) (A3 —3A7)0,0%0502 (8% - )

—4A}2A3(A3—3A7)0%,0H (b - 3%¢) + 24,01 (AF—3A7) 0207 (34)?

—2X FAAL A7 (AF—9AF) 02 (802)2 (3¢ )2

— 3 (F0)2A72A2(9A% - 3A,§A%+A‘})o4(aaz)2(a¢)2”. (20)

The momentum integrals are of the type
d®p pES 1
(2m)2 " (p2+ u)™(p+ up)™’

which can easily be integrated.” However, the result
will not be very illuminating. It is more convenient to
study the m, — oo limit in the present form.

The present result for the two-derivative terms is in
agreement with those calculated by Cheyette.?2 The
four-derivative terms are completely new. It will be
extremely difficult, if not impossible, to calculate them
by any other method. I have also applied Eq. (11) to
calculate the effective-action expansion for the non-
linear SO(N) o model. The comparison between the
linear and the nonlinear o model will be reported else-
where.!!

Although I have directed the application of this
method to the effective-action expansion, the general
approach can be used for a wide range of interesting
problems such as the operator-product expansion,
anomalies, and other derivative expansions. One can
also use Eq. (3) to develop a hybrid derivative expan-
sion for a subset of background fields for the calcula-
tion of processes involving soft pions or photons.
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