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Derivative Expansion for the One-Loop Effective Actions with Internal Symmetry
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A simple systematic method is presented for the evaluation of the derivative expansion of the
functional determinant ~ith covariant differential operators, space-time-dependent background
fields, and internal symmetry. The results are directly applicable to the one-loop perturbative
effective-action expansion for bosons and fermions. Derivative expansions up to four-derivative
terms for Tr in[ —II'+ U(X)] and the effective action of the SO(N) linear o model are calculated.

PACS numbers: 11.10.Ef, 03.65.Db, 11.10.Lm

Recently„ there has been increasing interest in effec-
tive field theories with higher-derivative couplings.
Examples are the ordinary and supersymmetric non-
linear o. model, the strongly interacting heavy Higgs
sector of the standard model, skyrmion physics, and
vacuum tunneling. This enhances the urgency to
solve the important problem of developing a simple
systematic procedure for the evaluation of the deriva-
tive expansion for the effective action and the operator
expansion. A recent series of papers has taken the
first step toward this goal. ' 6 The purpose of this pa-

per is to present the best possible method applicable to
any model which may contain internal symmetry,
derivative couplings, gauge fields, and other back-
ground fields.

The objective is to incorporate the short-distance ef-
fects of the unobservable fields into an effective action
of observable fields. As suggested in Ref. l„an effi-
cient way to accomplish this objective is to integrate
out the unobservable quantum degree of freedom per-
turbatively. One can make use of the finite translation
property to carry out the derivative expansion in such
a way that the quantum corrections can be calculated
in momentum space with use of modified Feynman
propagators while the space-time-dependent observ-
able background fields are kept intact in the configura-
tion space for the final expression of the effective ac-
tion. However, because of the short-distance singular-
ity of the field theory, the expansion cannot be per-
formed in a straightforward manner, but rather
through an implicit regularization scheme. It is neces-
sary to functionally differentiate the trace logarithm
function before the expansion and subsequently undo
it by a functional integration. ' Other regularization
schemes do not simplify the procedures substantial-
ly. 2 4 Moreover, the direct generalization of this
method to include covariant derivative couplings and
internal symmetry is rather complicated. I report in
this paper a novel method which would retain all the
advantages of the previous method and at the same
time eliminate these problems. Since the main idea
can be naturally generalized to high-order perturbation
calculations, this presentation will be limited to the

one-loop correction. After a general description of the
method, I shall apply it to calculate the derivative ex-
pansions of Tr ln[ —II2+ U(X)1 and the effective ac-
tion of the linear SO(N) o. model.

The one-loop contribution to the effective action has
the general form

TrlnG '(II„,U(X)), (1)

where U(X) represents a set of background fields and
is a matrix in the coordinate space, internal symmetry
space, and spin space. (II„),&=5ttP„—V„'(X)tj is
the generalized momentum and V„' are the gauge
fields while ttj are the generators of the gauge group.
The coordinate matrix elements are (xl U~(X)ly)
= U»(x)SD(x —y) and (x~P')y) = —iBt'f'i (x —y).
The calculation will be performed in the D-

dimensional Euclidean space.
The essential ingredient of this calculation is the

nonvanishing commutator [II„,X„1= [P~,X„1=
—iS„„The . covariant derivatives defined by

X„U(X) = i[11„,U(X)1, F„„(X)= —i[11„,11„1,and
their subsequent covariant derivatives &„6(X)
= t'[Il„,@ (X)1 are functions of Xonly. Therefore, if
one can use the cyclic permutation property of the
trace operation and express TrlnG ' as the trace of a
function of covariant derivatives then

TrlnG '=Trf(X) =„d x(ylf(X)Ix) I»=„

=~I dDxf(x)SD(0).
The presence of the infinite factor 5 (0) implies that
some kind of regularization must be used to provide a
natural cancellation of the factor 8D(0) to yield a finite
result. As described briefly above there are usually
unwanted complications associated with any regulariza-
tion scheme. However, in this case there is a natural
and physical averaging process already present in any
loop calculation which ~ould provide such service with
no additional cost, namely the average over the inter-
nal loop momentum of the Feynman graph. The cru-
cial development of this work is the recognition that
this average procedure can be implemented at the very
beginning stage in the presence of the background
fields. The advantages for doing so will be apparent
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later.
Equation (1) is invariant under a finite momentum

translation,

Tr inG-'(II„, U(X))
= Tre&'+in G '(II U(X) )e

=TrlnG '(lI„+p„,U(X)).

The arbitrary momentum p„can be averaged over the
entire momentum space,

TrlnG '(II„,U(X))

J ~D TrlnG '(Il„+p„,U(X)), (3)5'o (2~'

&&here

~ (0) =Jld p/(21r)D= v/(277)22

is exactly the infinite factor required for the regulariza-
tion to work. The expression in Eq. (3) is the generat-
ing functional for the n-point vertex functions. p„ is
the loop momentum while 11~ carries the momentum
of the external fields.

In addition to fulfilling the regularization function,
the introduction of the momentum integration without
disturbing the full trace operation offers the needed
freedom for manipulations, such as cyclic permuta-
tions of the operators and integrations by parts, in or-
der to bring TrlnG ' into the trace of a function of
the covariant derivatives in the covariant derivative
expansion. The procedure for the covariant derivative
expansion becomes exceedingly simple. First, one ex-
pands Eq. (3) in a power series of II~,

dD
TrlnG '(II„,U) =

D TrlnG '(p„,U(X))
5D(o) ~

—Tr X —[ —G(p~, U)(G '(II„+p„,U) —G '(p„, U)))", (4)
&n

which can be manipulated into functions of covariant
derivatives with no other isolated II„operator. The
trace can then be evaluated easily in the coordinate
space to give the final result.

Practically all boson-loop and fermion-loop contri-
butions excluding the anomaly contribution can be cast
into the general form

l

and

G '(II +p U(X)) =b '+II +2p II,

with

'(X) = p + U(X) = G '(p, U(X) ).

(6)

G-'(II„,U(X) ) = II2+ U(X) (5) For a second-order operator, it is more convenient to
carry out the power expansion in two steps:

dD
Trln(II2+ U) =

D D . . .Tr(ln(p~2+ U)+in(1+6112)+in[1+(1+5112) '52p II]}.sDo ~

For the second term, a unity factor 1 = (1/D) (8/dp„) p~ can be inserted into the integrand and an integration by
parts yields (2/D) p (1+5,II2) 'b, 2II2. The expansion of the third term gives

—X —[-(I+a112)-'a2p 11]".
&n

Performing the angular average and including terms through II4, one obtains
t

Tr ln(112+ U) = ~ Tr' ln(p2+ U) + —p2[5 II2 —AII"b, II&] ——p2(511252II2 —2&1125,lI"b, ri„)
aD(o) ~ (2~)D

&4[2zri ziI~zII„zii" +ari„sli„aII~aii" ] . (9)
D(D+2)

It is not difficult to recognize that Tr[h II —AII"AII„]= ——,
' Tr[II",6] = —,

' Tr($ "b, )2. With the identity
p2= [1/(D+2))(8/Bp„)(p„p2) and an integration by parts, the two O(II ) terms can be combined,

D(D+2)
p4 Tr [2g3112g112+ g21I2g2II2 2g211gagri grl2 2gIlgag211 g112 2glIlagli g21I2

+2(b, II"AII )'+ (AII"AII")2] (10)

Making full use of the cyclic permutation freedom and with some algebraic manipulation, one can express this
O(II ) contribution in terms of the commutators of II„or the covariant derivatives. It becomes straightforward to
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take the trace in the coordinate space and complete the calculation. Returning to the Minkowski space but keeping
the momentum explicitly in Euclidean space we have the final result

Tr in( —11'+ U(~) )
D t

=I»d x pp 2

(2m. )D tr ln[p, + U(x)] ——p, (X S)—
2

pp[2[~(n'~)]'+ l(&~~)(n "~)]'

—2[($"6)($„5)] —O'"52F„„A —4ip'"5(2)„b, )h(2) „6)], (11)

where A(x) = I/[pz2+ U(x)]. The trace tr is for the
internal symmetry and spin spaces only.

In D=4 dimensions, the first term gives the well-
known contribution to the effective potential and is
quadratically divergent. ' We shall use dimensional
regularization since the quadratically divergent contri-
bution can always be recovered by applying to the
result other regularization procedures such as de-
scribed in Ref. 4. The O(F„„) term is logarithmically
divergent. All other terms in the derivative expansion
are finite. In the absence of any internal symmetry
and gauge field, Eq. (11) reduces to the correct result
of Refs. 1 and 2.

If U is not a multiple of the unit matrix or does not
transform as a singlet under finite symmetry group,
then U has more than one distinct eigenvalue U, (x)
and it does not commute with D~U, F„„, or other
higher covariant derivatives. Therefore, with the ex-
ception of the first term in Eq. (11), it will not be pos-
sible to combine all factors of LL into a single power to
perform the momentum integration in a trivial
manner. It is necessary to project out the eigenmodes
b, = g, b, ,P, and then collect various factors of 5, for
the momentum integration. It is important to point
out that no other method including the proper-time
heat kernel method in the present form can give the
correct treatment for models with nondegenerate
eigenmodes. 9

For the purpose of isolating the divergent contribu-
tion one can safely ignore the noncommutivity of U
with the covariant derivatives since the commutator
[A,F„„]= b, [F~„,U]b contains an extra covergent fac-
tor. Therefore„ the momentum integration can be per-
formed easily. The logarthmically divergent term is
given by

[i/(4~)'1(I/. ) tr[ U'- —,
' F„'„],

which is identical to the well-known result of 't
Hooft &0

We shall use the SO(/V) linear a- model as an exam-
ple to illustrate the method. The effective Lagrangean
of this model is particularly interesting because it can
be used to study the transition to the nonlinear o-

model at m ~. The two-derivative terms have re-

cently been calculated by Cheyette2 using a slightly
modified method of Ref. I and by Zuk. 5 However, the
m ~ limit of these terms is trivial.

The SO(%) linear a. model Lagrangean is

Z (a ) = —,
' (h„e)'- —,

' m'e'- (I/4! )~(e')'+'e,
(12)

where the last term is the symmetry-breaking term
which would not contribute in this calculation. The ef-
fective action is given by7

Jl d L,rr(@)

d"xX (4)+ —,
' iTrln( —P2+ U(X)). (13)

The matrix elements of U are most conveniently ex-
pressed in terms of the SO(W) spherical variables
~= I@l = (e')"' and $=e/IC I such that $ =1

(xl &igly&

= [uL(a ) P I'LL+ ur(o ) P (lr]5D(x —y), (14)

where &
&

= P,Q& and P
& =5& @,QJ are t—he longi-

tudinal and the transverse projection operators with
multiPlicities nr = Tr&L= I and nr = Tr P r= X—1,
respectively. The corresponding eigenvalues of Uare

uz((r) = m2+
2

A(r2, u. T(a) = m + 'Z(r —(15).

Similarly, we can express the propagation function as

z =z, (~)w'+a„(~) p ' (16)
with

bL(o. ) = I/[p'+ uz(o. )], Ar(~) = I/[p'+ ur(~)]
The effective Lagrangean can be obtained by substitut-
ing these explicit forms into Eq. (11) with the gauge
fields set equal to zero and combining the result with
Eq. (13),

where X (4) is the Lagrangean in Eq. (12) and can be
expressed in terms of the new variables ~ and $,
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X s(u) is the one-loop correction for the neutral scalar field as calculated in Refs. 1 and 2. In four dimensions, it

is given by

L s(u) = u' ——ln
" + —' u '(flu)'+ —' u '(ri'u)' ——'

u '(rlu)'(r)'u) + ' u '(flu)4 . (19)

X~ represents the contribution from two distinct eigenvalues uL and ur propagating in the same loop and is finite
in four dimensions,

D
= (-'&)' dpE 1 2 2 2 4

M 3 „(2 )D D

+ p4 ~,'~2(3~,' —~',)~'(a„y Vy)'+4~,'~',~'(a,y a„y)'
D D+

+2g3gLg4(ri2y)2+2' g (g —3&L)(hr —3bL)B o r)p (|).y e)

-4~,'~', (~,'-3~,')~'a„~'(a y a'y) + 2~,~,(~', -3~,')~'8'~'(S~)'

—2X 3 AALAT(~ T 9~15)o 2(r)o2)2((jp)2

——( —g)2+z+2(9/4 3+2+2 +Z4)~4(p~2)2(py)2 (20)

The momentum integrals are of the type

"p 2s 1

(2m)D (p~2+ uL) (pE+ ur)"'

which ean easily be integrated. s However, the result
will not be very illuminating. It is more convenient to
study the m ~ limit in the present form.

The present result for the two-derivative terms is in
agreement with those calculated by Cheyette. 2 The
four-derivative terms are completely new. It will be
extremely difficult, if not impossible, to calculate them
by any other method. I have also applied Eq. (11) to
calculate the effective-action expansion for the non-
linear SO(N) o. model. The comparison between the
linear and the nonlinear a. model will be reported else-
where "

Although I have directed the application of this
method to the effective-action expansion, the general
approach can be used for a wide range of interesting
problems such as the operator-product expansion,
anomalies, and other derivative expansions. One can
also use Eq. (3) to develop a hybrid derivative expan-
sion for a subset of background fields for the calcula-
tion of processes involving soft pions or photons.
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