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Non-Abelian Adiabatic Phases and the Fractional Quantum Hall Effect
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An explicit realization of U(n) quantum holonomy is presented in the context of nonrelativ&stic
(2+ 1)-dimensional electrodynamics and used to construct the adiabatic effective action. It is
shown that the U(1) subgroup of the U(n) holonomy gives rise to an effective Chem-Simons «Po-
logical mass term and its relationship with the fractional quantum Hall effect is discussed.
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The quantum adiabatic phase'2 has recently
emerged as a universal element in the topological
analysis of various physical problems. It can be under-
stood as an Aharonov-Bohm effect in the adiabatic
transport of wave functions on the parameter space of
a quantum mechanical system and has already seen
numerous applications, particularly to the modification
of semiclassical quantization rules, 2~ fractional statis-
tics of quasiparticles or vortices in two dimensions, s ~

and the SchrOdinger picture of chiral gauge anomalies. s

Furthermore, some of its predicted interference
phenomena9 have recently found spectacular agree-
ment with experiment. to

However, non-Abelian quantum holonomy, 2 "with
the notable exception of diatomic molecular systems,
has encountered fewer applications. It requires the
nongeneric scenario of a multiply degenerate quantum
state which remains so over a finite subset of the
parameter space of the Hamiltonian and, furthermore,
that in this parameter subspace, no other energy levels
cross those of the degenerate subset. In this Letter we
shall construct an explicit example of this situation in
the context of (2+1)-dimensional electrodynamics.
We shall also derive an adiabatic effective action and
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where B(x)='7xA(x) and P is the spin matrix.
(Both spin and magnetic field are scalars in two dimen-
sions. ) ts We shall begin by second quantizing the fer-
mions in an external static gauge field with Ho=0 and
examining quantum holonomy of the fermionic
ground state on the space of background fields.

show how the adiabatic phase is related to the Hall
conductance of a fractionally filled degenerate energy
band and to charges and statistics of magnetic flux
tubes.

Recent phenomenological investigations'2 of the
fractionally quantized Hall effect suggest dynamics
derivable from an effective action with a Chern-
Simons term. '3 Here, we shall provide a theoretical
framework for this approach and demonstrate the ap-
pearance of topological photon mass. '4

We consider a system of nonrelativistic electrons
confined to a two-dimensional space with gyromagnet-
ic ratio 2 and dynamics governed by the Pauli Hamil-
tonian

'2
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Since (1) can be written as the square of the Dirac
Hamiltonian,

hp = (2M) 'hD2,

~here

ho=iha ']7+ (e/c)a A,

they share the same eigenfunctions. We implement an
infrared regularization by considering the operators (1)
and (2) on a large two-sphere S2. Then their spectra
are discrete and the dimensions of their zero eigen-
spaces are given by the Atiyah-Singer index theorem'6:
hD can be written in the form

D+ 0

and the index theorem yields

where ( a, ati }=5 ti. The ground state of the second
quantized Hamiltonian, H= J ]id (x)hp[i](x), is 2~-

$'2

fold degenerate —each zero mode being either filled or
empty. However, we shall consider ground states
which are also eigenstates of the electric charge and
therefore have a fixed fractional filling f [f= (number
of occupied zero modes) / l@ l ] and degeneracy

We label these ground states by lp, ;A ), p, =1, . . . ,
D. They are defined by a lp, ;A) =0 if co )0;
a lp, ;A ) =0 for a subset labeled by p, l co = 0, 0[ C p, }
of f1@i of the l@l zero modes and atilt, ;A) =0 for the
remaining (1 f) l @ l

—with co& = 0, p C p. .
We consider the problem of adiabatic transport of a

ground-state wave function around a continuous
closed loop on the space of gauge-field configurations
A(x) with flux $. We assume that the evolution is
governed by the time-dependent Schrodinger equation

dim kerD —dim kerD+ =$ = „,a(x). (4) [i8/Bt H(A'—)]y(t,A') =0, 0» t» T,

Furthermore, hD has a vanishing theorem on
S2—either dimker D=0 or dimkerD+ =0. This im-
plies

dimkerhD=dimkerhp= l&l,

and leads to the desired scenario —hp has a l$l-fold
degenerate ground state which remains distinct from
other components of the spectrum for all external
fields A (x) which support the same magnetic flux. '7

If kIT are the eigenfunctions of hp, hp'IT =co 'IT,
the electron field is quantized as ]IT(x) = X,a %' (x)

with the boundary condition ]II (0) = l~;Ao)= A . Since H(A') lp;A') =0 for 0» t «» T, we have
the adiabatic solution

]tI(T,A ) =Pexpi() ~ lp, ,A),

with the U(D) functional connection

A„„(t)=t(p, A'l8/Btlv A')

The functional curvature is obtained by considering
the two-parameter family A (x, o') (a =1,2) and the
covariant curl of ~,

F„„=(5A+ [A,d[])~„=—ie'~x (P:'d k';d )(k;& ~ ~;& ),

where the summation excludes intermediate states in
the set of ground states degenerate in energy and
charge with p, and v. Since the operators a/aa. con-
serve electric charge, this summation is further re-
stricted to include only excited states. Therefore, we
can use the formula

p'A k A = —

p 31 BH
a ' ' E~' a ~ (10)

to evaluate (9).
This construction has an intrinsic functional gauge

structure: Under an A-dependent change of basis in
the zero eigenspace of H, lp, ;A ) A„„[A] lv;A ),
where A is a U(D) matrix, A+ A = AA+ = 1, ~ and F
transform like A A '(8+A)A, FA ' FA.
The phase in (7) roman transforms eovariantly and
trPexp(i()~) is invariant.

with A~ = A, can be evaluated for large p in the adia-
batic approximation by standard methods,

K„„[A)= [Pexp(i))A) ]„„+.. . ., (12)

where from Eq. (8), A is of first order in A(x).
K„„[A] must transform covariantly under a

change of basis, K A 'KA, and therefore one
would expect it to contain the path-ordered phase. For
the Abelian case, this has been discussed in Ref. 4.

We shall now consider the gauge field effective ac-
tion obtained by elimination of fermionic variables
from the path-integral representation of the partition
function. The propagator

tp
K„„[A]=(p;Ap Tpxp — dt H[A'] v Ap)
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The effective action contains

tp r P P
intr(Texp — 0[A']dt) =intr{Pexp[i() A (t)dt) ]+. . .=lnD+ —( dt tr&(t)+. . . ,40 ~0 D ao (13)

where the correction terms are at least of second order in time derivatives of A (x, t).'8

Only the U(1) subgroup of the U(D) holonomy contributes in the adiabatic limit. The non-Abelian nature of A

appears in higher orders. To obtain the gauge-invariant effective action we must add the Lagrange-multiplier field
A, (x, t) with the charge density of the fermionic states. Their charge is efi/{ and therefore their charge density,
to leading order in derivatives, is'9

p(x) = (e2f/2ntc)sgnl@I 8(x) +. . . . (14)

Thus, we obtain
t

pP pP t'
~ e f

Serf[A] = lnD+ —5t d7 tr& (~) + t55 dr d x sgn(@) Ap(x)B(x) + .
D p 2nt c

(15)

It remains to compute trA. Gauge invariance of (15) would require that trA contains the term

{ d 2x(e f2/4nt c)sg n(g) eAtt, (x, t)A (J xt).

This will be verified by explicit calculation. To analyze the Hall effect it is sufficient to evaluate F in a constant
external magnetic field on the plane R2. With the gauge A,„,= (O,B,„,xi), and by use of Eqs. (9) and (10), it is
straightforward to show that to leading order in A (x),

t)A, (x) BA, (y)trF= d2x d2y e'b trF'j(x, y, B'"')+. . . (16a)J tio.& ()a.be'f, dkdk' exp[ —&(k —k')(x2 y2) k—trFtt(xy) = hatt sgn(eB, „,) X'. . . /tp y, —
hc 4m2 {e exiin i eBex~

k k' k'

iB i'
where h„(x) are harmonic oscillator wave functions with frequency i eB,„,i. Then, using Stokes s theorem we have

e

tr5)A(r)dr = ()dr d—2x d2y A;(x) trF"(xyB,„,) A&(y, r)+. . . , (17)

and upon substitution into Eq. (15) the local component of trF&(xy) yields the Hall conductivity tensor

0-it= —
~ d2x trF"(x y) = sgn(eB, „,)e'&.1 ~ 2 e2f

D '
2etc.

The form of the effective action further implies that a local approximation exhibits a topological mass term

e2 10

S,fr[A] = lnD+ i sgn(eB, „,)5)d7 d x e~""A„B„A&+.. . .~tc (19)

This expression [and implicitly Eq. (14)] yields frac-
tional charges q = ef@sgn(eB, „,) for flux tubes with
flux e@/tc. Furthermore, an adiabatic argument in
Ref. 6 indicates that it also describes fractional
statistics —a wave functional for two tubes of flux
equi/ti c and e@2/k c would change phase by
n fgi$2 sgn(eB, „,) upon interchange of their positions
through a spatial rotation ~ith angle ~. These are pre-
cisely the charge and statistics of quasiparticles in
Laughlin's Ansatz for the ground-state wave func-

tion, 2' used in analysis of the fractionally quantized
Hall effect. The further generation of topological pho-
ton mass provides the necessary conditions for the
phenomenological approach of Ref. 12; the mass gap is
required for the observed dissipationless current flow
on the Hall conductivity plateaux. If current carriers
are charged vortices, dissipation would necessitate ex-
citation of plasmons which is suppressed by the mass
gap.
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In conclusion, we have found that adiabatic phases
are related to the conductivity tensor conventionally
obtained by linear-response theory. This suggests that
our method could be used to evaluate the transport
coefficients in other systems which manifest a similar
nongeneric scenario for a degenerate quantum ground
state.

We further observe that when f is an integer we ob-
tain topological mass equal to the fermion induced
mass in relativistic models, ' and conductivity related
to the TKNN integers22 as first noted by Jackiw. '4

Finally, the present adiabatic analysis obtains the
kinematics of the Hall effect, the Hall conductance,
and charges and statistics of quasiparticles. However,
it does not address the apparently dynamical question
of what determines the filling fraction f. Indeed, ob-
taining the desired2o preferred values of f would re-
quire further dynamical analysis. One avenue would
be to consider a background Wigner crystal of flux
tubes. The topological mass term in (20) yields a
Coulomb interaction and an effective action similar to
the one derived for the recently proposed coherent-
ring exchange theory of the quantized Hall effect. 23

Whether this approach can distinguish highly preferred
values of f is a subject of ongoing research and a forth-
coming publication.
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