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Results of numerical calculations of the electrical resistivity of the following primary solid-
solution alloys are presented: Cu(Zn), Cu(Ga), Cu(Ge), Ag(Pd), and Ni(Mo). Our theoretical
model is one reported earlier by Butler and uses a charge-self-consistent Korringa-Kohn-Rostoker
coherent-potential approximation. The calculations are valid for strong as well as weak scattering,
and for the first time, vertex corrections are included. Excellent agreement is obtained with experi-

ment for the resistivity.
PACS numbers: 72.10.Fk, 71.15.Jf

We report here rigorous and realistic ab initio calcu-
lations of the dc residual resistivity of random substi-
tutional alloys. The calculations do not use adjustable
parameters and they start with only the atomic
numbers, the alloy concentrations, and the lattice
parameters as input.! The model is based on the
Korringa-Kohn-Rostoker coherent-potential approxi-
mation (KKR-CPA)? and the one-electron Kubo for-
mula.® It goes beyond any previous model for deter-
mination of transport properties of random alloys in

that it is not limited to weak scattering and does not |
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For a spherical nonoverlapping muffin-tin potential,
the imaginary part of the Green’s function can be ex-
pressed as*
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for the complex energy z The point r is in unit cell m
while the point r’ is in cell n with r=R,, +r,,, where
R,, is the vector to the center of cell m. (We consider,
for simplicity only, one atom per unit cell.) Zp*(r,,,z)
is the wave function of angular momentum L (=/u)
centered on cell m which is regular at the origin and
which satisfies the one-electron Schrddinger equation
with the spherical muffin-tin potential and complex
energy z. The 7™ is the scattering-path operator which
propagates the electron from site m to site n taking
into account scatterings at all possible sites.

For a binary alloy of atoms 4 and B, the potential
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require the existence of well-defined quasiparticles.
We believe that the model is valid in the regime where
the Boltzmann equation breaks down because energy
bands are not defined. The model includes vertex
corrections, and it properly treats the momentum ma-
trix elements. In this paper we discuss our results for
copper-rich alloys of zinc, gallium, and germanium,
for silver alloys containing palladium, and for nickel
alloyed with molybdenum.

The dc electrical conductivity tensor in the one-
electron approximation can be written in the Kubo for-
malism as!

oY)

[

site n depends on whether it is occupied by an 4 or B
atom. To represent a real random system, we take a
configurational average considering all possible ar-
rangements of the two species on the fixed lattice and
for the given concentration. We assume that the ar-
rangements are completely random with no short-
range chemical order. We then carry out the config-
urational average within the CPA. The scattering-path
operator 7™ for a given configuration is replaced by
7™ (the scattering-path operator for the CPA effec-
tive medium) plus correction terms.

At this point the algebra becomes rather involved,
and the reader should see Ref. 1 for details. The con-
ductivity tensor breaks up naturally into o,, =09,
+0"1w, where the first term contains all contributions
in Eq. (1) in which r and r’ are in the same cell (i.e.,
n=m), while the second term has all contributions
with r and r’ not in the same cell. These two sets of
contributions must be treated in a fundamentally dif-
ferent way in carrying out the configurational average.
When n= m, the atoms in cells n» and m must be the

same atom, and o3, has the form
ody ~ D ctre® e <02,

Q)

where the sum is over the two types of atoms, c* is the
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concentration of type a (i.e., the probability that the
cell is occupied by species a), and JZ is the vth com-
ponent of the current matrix element for atoms of type
a. Jis closely related to J.

For the o! term, the atoms in cells m and n are
treated as statistically independent. This term is more
complicated than the o term and it also contains the
vertex correction:

ci,**—Eazac"cﬁ]:[l—Xw]_lX]f. 6)

The deviation of the factor [1—Xw]~! from 1 gives
the vertex correction (or ‘‘scattering in’’ term).

The quantity X in o! is essentially the Brillouin-zone
average of two r matrices 7.,.,7r,,. In our calcula-

tions up to now we have restricted our angular
momentum expansions to /=2 which means that
each L (=/u) takes on nine different values. Thus,
at first glance, it appears that we need 9*=6561 dif-
ferent terms in X. However, because of the cubic
point symmetry of the alloy (leading to selection rules
for the J matrix elements), we have l4=/ +1 and
l=1 +1. With the maximum value of /taken as 2,
there are 36 possible LyL; or L,L; pairs. Thus X is a
36 x 36 matrix with 1296 elements. We have found by
further use of symmetry (using a combination of
group theory and computer-generated point opera-
tions) that the number of elements of X that must be
calculated is no larger than 114. (The remaining ele-
ments vanish or are trivially related to the 114 ele-
ments.) This reduction is very important because each
of these independent elements must be integrated
over the 3th irreducible part of the Brillouin zone.

The computer codes that we have developed are
built on the KKR-CPA program of Stocks, Temmer-
man, and Gyorffy.> We also use as input self-
consistent potentials that have been generated by
Stocks and co-workers. The main part of our calcula-
tion of the conductivity consists of three parts. First,
we calculate the 36 x 3 x 2 current matrix elements (36
L, L, pairs, three Cartesian components of the current
vector, and two atom species for a binary alloy). The
second part of the calculation consists of calculating
the 114 X matrix elements (and the J from J) after the
CPA convergence. Finally, the various parts are put
together and multiplied by the proper factors to get the
conductivity o (both with and without vertex correc-
tions) in the desired units.

Our calculated residual resistivities for the copper
and silver alloys are shown in Fig. 1 as the open trian-
gles. The straight lines for the copper alloys are the
Nordheim relation,® pocc(l1—c¢), chosen to go
through one of the calculated points. The squares in-
dicate experimental data for the copper alloys’~!!
(open squares for cold-worked alloys and closed
squares for annealed samples), while the circles are ex-
perimental data for Ag(Pd) alloys!?-* (open circles for
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FIG. 1. Calculated and experimental resistivities of
Cu(Zn), Cu(Ga), Cu(Ge), and Ag(Pd) alloys. Open trian-
gles are calculated values. The straight lines are the
Nordheim relation [pecc(l1—c¢)]. The open symbols
[squares for the copper alloys and circles for Ag(Pd)] are for
cold-worked samples, while the closed symbols are for an-
nealed samples. The solid line for Ag(Pd) is a guide for the
eye. For Ag(Pd) the calculated results at ¢=0.1, 0.2, and
0.3 are obscured by the measured values.

cold-worked alloys and closed circles for annealed al-
loys). The symbols for the experimental values ob-
scure the calculated points (open triangles) for Ag(Pd)
at ¢=0.1, 0.2, and 0.3; for Cu(Zn) at ¢=0.1; for
Cu(Ga) at ¢=0.05; and for Cu(Ge) at ¢=0.033 and
0.10. That is, for these concentrations, the calculated
points fall directly on (to the accuracy of this graph)
the experimental points.

Both the calculated and measured resistivities of the
copper alloys follow the Nordheim relation (a straight
line) to a good approximation. Experimental results
are shown for both annealed’"'° and cold-worked al-
loys.”!1 The experimental and calculated results are in
excellent agreement for low concentrations, but near
the boundary of the single-phase region (c=0.38 for
Zn, ¢=0.19 for Ga, and ¢=0.085 for Ge), the mea-
sured resistivities of the annealed alloys are lower than
the calculations. We attribute this discrepancy to the
presence of short-range order in these alloys. When
the short-range order is disrupted by cold working, the
resistivity increases and in most cases lies slightly
above the calculated values. The cold working not
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only shuffles the atoms, which is desirable from the
point of view of comparison with theory since it makes
the atomic configuration more disordered, but it also
introduces defects such as dislocation which can scatter
electrons and cause an increased resistivity.

The main differences between Cu(Zn), Cu(Ga),
and Cu(Ge) is that for equal concentrations, gallium
scatters more strongly than zinc and germanium more
strongly than gallium. This is in qualitative agreement
with Linde’s ‘“‘law’’ which states that the scattering
rate for different impurities in the same host should
vary as (AZ)?, where AZ is the difference in the
number of valence electrons of the host and impurity
atoms.!’ It may be seen both from the calculations
and from the experimental data, however, that the
resistivity increases substantially faster than predicted
by Linde. The observed ratios of the resistivity per
impurity atom of Zn, Ga, and Ge in Cu are approxi-
mately 1:5:14 compared to 1:4:9 which would be
predicted by Linde’s ‘‘law.”

The calculated and experimental!Z-!4

resistivity I

PNVC =021+ 1) [sin(8/1—8p) 12

values for the Ag(Pd) alloys are in good agreement.
Both deviate strongly from the Nordheim relation for
concentrations of palladium greater than about 20%.
The detailed physical explanation for this deviation is
somewhat complicated but is related to the presence of
the palladium d states which contribute the dominant
part of the Fermi-energy density of states for palladi-
um concentrations greater than 0.5. Cold work has a
much smaller effect on Ag(Pd) alloys than on the
copper alloys. Interestingly, cold work causes an initial
decrease in the electrical resistivity for palladium con-
centrations less than 0.5.14

For all of the alloys in Fig. 1, the vertex corrections
are quite important. For Cu(Zn), Cu(Ga), and
Cu(Ge) the effect of including the vertex corrections
in the calculations was to reduce the resistivity by fac-
tors of approximately 2.51 +0.01, 2.4 +0.1, and 2.1
+0.05, respectively. Under the assumption of weak
scattering, the ratio of the resistivity with no vertex
corrections to that with vertex corrections can be es-
timated from the phase-shift differences between the
two alloy constituents by!®

P Si—o(I+DIsin{ 3/, —8F ) — (5/—8P) )12

(weak scattering), and this gives, for example, a value
of 3.7 £0.01 for all three concentrations of Cu(Zn).
This is quite a bit larger than the value obtained from
the more rigorous calculation. [We have checked that
our programs give the same results as Eq. (7) in the
weak-scattering limit by doing the calculations for
small spherical-square-well potentials.]

The effect of the vertex corrections is much smaller
in the Ag(Pd) alloys and decreases with increasing pal-
ladium content. For AgggPdy, the vertex corrections
reduce the calculated resistivity by 24%, while for
AgosPdy s the reduction is only 11%. Preliminary cal-
culations for the Pd-rich alloys indicate that vertex
corrections are very small for these alloys (~ 3%).
The reason for the absence of vertex corrections in al-
loys with predominantly d character at the Fermi ener-
gy was explained previously.!’

The calculations reported here include s, p, and d
states. Quantitative calculations for transition-metal
alloys (which have a Fermi-energy density of states
derived primarily from d orbitals) must await the ex-
tension of the KKR-CPA and resistivity codes to in-
clude f (/=3) states. These extensions which are
presently in progress are needed because the current
matrix elements [Eq. (2)] have odd parity and couple d
states to both p and fstates. Omission of the f states
may cause an underestimate of the electrical conduc-
tivity of a transition-metal alloy by as much as 10%.
We have observed errors of this order in calculations
of the electrical resistivity of Pd-rich alloys of
Agcpdl -c*

(7

In addition to these noble-metal-based alloys, we
have calculated the electrical resistivity of the very
resistive alloy NiggMog,. The disorder in this alloy is
so strong that the energy bands are smeared over the
entire Brillouin zone. The resistance of an annealed
sample of NiygMog, decreases significantly when it is
cold worked. We attribute this decrease to the disrup-
tion of short-range order. Measurements of the resis-
tivity as a function of deformation (reduction in
area)!® indicate that the room-temperature resistivity
decreases from 140 to 120 Q) cm with a 68% reduc-
tion in cross-sectional area. With greater deformations
the resistivity increases slightly. Since dp/dT for
NiggMog, is approximately constant at 0.011 wQ
cm/K below room temperature,!® the experimental
T=0 resistivity in the cold-worked state is approxi-
mately 117 wQ cm, in essentially perfect agreement
with the calculated value of 116 u Q cm. Such perfect
agreement may be partially fortuitous, however, since
defects introduced by cold working probably contribu-
tion a few micro-ohm centimeters to the experimental
resistivity. The omission of f states, on the other
hand, probably increases the calculated resistivity by
an amount of the same order so that if both effects
were taken into account, excellent agreement between
theory and experiment should remain.

The residual electrical resistivities of five random al-
loys have been calculated from first principles by use
of the KKR-CPA and the theory of Ref. 1. No ad-
justable parameters were used. The agreement
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between theory and experiment appears to be within
the uncertainty associated with inferring the resistivity
of random alloys from measurements on real ones.
The extension of the theory of Ref. 1 to include
short-range order would be very useful.
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