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Phase-Transition Behavior in a Random-Anisotropy System
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The character of the magnetic transition is studied for a magnetic glass with strong random-
anisotropy and ferromagnetic interactions. Field-dependent ac susceptibility measurements are
presented near the ordering temperature of Tb64Fe206ai6, The data are analyzed with a scaling
theory for the singular susceptibility. An excellent collapse of the 0, T data is obtained for reduced
temperatures in the range 0.002-0.13. These results, which are compared with recent theoretical
work, provide strong evidence for a true phase transition in a random-anisotropy system.
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Among the most challenging and significant prob-
lems in condensed-matter and statistical physics is the
development of an understanding of phase transitions
in random and disordered systems. Particularly intri-
guing are those in which it is difficult, both experi-
mentally and theoretically, to determine whether the
putative transitions are true phase transitions based on
equilibrium statistical mechanics, or glass "transi-
tions" in which the relaxation times smoothly increase
as the temperature is lowered, and finally become
equal to the measuring time at Tg. These considera-
tions apply to a rather wide variety of materials includ-
ing spin-glasses (SG), ' systems with random magnetic
fields2' or random magnetic anisotropies (RMA), 4 lo-
calized electron glasses, 5 ferroelectric glasses, 6 and me-
tastable charge-density-wave states. 7 Such systems
tend to be characterized by the existence of metastable
states, a high degree of ground-state degeneracy, and a
difficulty in determining a satisfactory order parame-
ter. In addition, it is often hard to ascertain a diverg-
ing susceptibility or relaxation time which would clear-
ly signal a phase-transition temperature.

The character of the transition exhibited by spin-
glasses has been debated at length. At present there
seems to be considerable evidence from both theory8
and experiment that the phase-transition picture is
relevant to spin-glasses, even though magnetic relaxa-
tions over energy barriers must be accounted for at
temperatures below and even somewhat above T, .' In
comparison with spin-glasses, the transitions exhibited
by random-field and, especially, random-anisotropy
systems have been much less studied. 4 9 In this paper
we present compelling evidence for the validity of a
phase-transition description of the spin freezing in
an amorphous material ~ith strong RMA: a-

Tb«Fe20Gai6. Critical exponents are determined by a
scaling analysis and the behavior in an applied field
also is discussed.

a-TbFeGa develops a random, spin-glass-like order
below a temperature Tg —141 K. The origin of the
randomness is RMA associated with electric field gra-

dients interacting with the Tb3+ ions. Were it not for
the strong RMA, the magnetic order would be ferri-
magnetic, as is the case for the analogous glass without
RMA: a-Gd64FezoGai6. In the Gd glass, Cornelison
and Sellmyer'0 have shown that the susceptibility
diverges at a critical temperature, T„below which a
ferrimagnetic structure obtains. Thus, despite the
rare-earth (RE)-Fe exchange interactions which result
in antiparallel RE and Fe moments, there are strong
ferromagnetic correlations (RE/RE and Fe/Fe) in both
the Tb and Gd glasses. '0

The glasses were prepared by rapid quenching from
the melt. High-resolution x-ray diffraction measure-
ments confirmed the amorphous structure of the sam-
ples. In previous work'0 we have studied the magneti-
zation of a-TbFeGa in fields up to 80 kOe and tem-
peratures down to 1.5 K. However, the present stud-
ies are confined to low-field ac susceptibility measure-
ments at and above Tg. The frequency was varied
from 10 to 104 Hz, but mostly was held at 280 Hz.
The amplitude of the ac field was about 0.1 Oe and a
dc field, H, parallel to H„, was applied.

In previous work on strong RMA glasses we and
others have noted several similarities in the transitions
exhibited by RMA and SG systems. " The dc suscepti-
bility in the field-cooled and zero-field-cooled states
shows common features. Both types of material exhi-
bit low-temperature magnetic viscosity effects which
are qualitatively similar. In RMA magnetic glasses
with strong ferromagnetic correlations (e.g. , a-TbFeGa
and a-TbFe2) the correlation length9 and susceptibili-
ty4'o can get large, but the freezing of the spins at Tg
prevents the total susceptibility X from diverging. The
nondiverging susceptibility is another similarity of
RMA and SG transitions. Ho~ever, the sharpness of
the transitions can be much more pronounced in RMA
glasses. For example, in a-Nd64Co2oGai6 we have ob-
served a very narrow susceptibility peak at Tg for
which 5 T/ Ts —0.07, where 8 T is the FWHM. 4

Theoretically, it was shown in the limit D/Jp
where D and Jo are measures of the average RMA and
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exchange strengths, respectively, that the RMA energy
density has the same form as the random-bond SG
model with Ising symmetry. '2 For these and other
reasons it is desirable to consider the singular suscepti
bi!ity, X, =—Xo —X, where Xo and X are the linear and to-
tal susceptibihties, respectively. For temperatures
T & Ts, and in the small-field limit, the nonlinear sus-
ceptibility is defined by X„,= X,/H2. These definitions
follow from the theoretical results for the SG problem,
first obtained by Suzuki. '3

Figure 1 shows the ac susceptibility of a-TbFeGa for
several applid dc fields ranging from 0 to 288 Qe. The
lower part of the figure gives the temperature depen-
dence of X, for several fields. In order to determine
whether a phase-transition picture is relevant to this
transition it is necessary to determine an appropriate
order parameter, and then to have a scaling theory in
terms of which critical exponents can be determined.
For the RMA problem the order parameter can be
chosen as q=N '$(J, ) (J,), which measures the
correlation of a moment with its own direction. As
in the SG problem, it is the nonlinear susceptibility,
X„,, which should exhibit critical behavior if there ex-

ists a phase transition. The static scaling hypothesis
then implies for this case'

X = t&f(H'/t'r+t')

where f(x) is the scaling function and t = —(T T, )—/
T, is the reduced temperature. The theory also gives

Xzcr t ", t ) 0,

X, H'/'=H»'~+», t-0+,
with

(2)

(3)

Equations (2) and (3) hold in the limit of low enough t
and H

Figure 2 shows the results of the scalng analysis. In
this figure both the susceptibility and field have been
corrected for demagnetization effects. That is,
X X„[1—N„X„] ' and H H, —N&M, where X„„
Nz, and H, denote the measured ac susceptibility,
demagnetization factor, and applied field, respectively.
Nq was determined from a ferromagnetic sample of the
same shape as the a-TbFeGa sample and had the value
2.2 g Qe/emu. The demagnetization corrections were
at most 10% of X„and H, . The range of reduced tem-
perature is 0.002» t~0.13. The critical exponents
obtained are P = 1.7 +0.1, y = 3.7 +0.1, and T
=140.5+0.6 K. The errors on P, y, and T, were es-
timated by our noting the sensitivity of computer-
generated scaling fits to variations in these parameters.
In addition, the uncertainty in T, contains a contribu-

0
o+h

xl

0

FIG. 1. ac susceptibility results at 280 Hz for a-
Tb~Fe20Ga~6. The top set of curves gives the total suscepti-
bility X in dc fields of 0=0, 48, 78, 120, 180, and 288 Oe
(top to bottom). The bottom set of curves gives the singular
susceptibility X, for fields of 288, 180, 120, 78, and 48 Oe
(top to bottom). The peak of X corresponds to 0.10N& ',
~here Nq is the demagnetization coefficient.
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FIG. 2. Scaling of X,/tt' as a function of FP/t~+" The.
fields are as follows: (inverted triangles) 40 Oe; (triangles)
78 Oe; (squares) 120 Oe; (circles) 180 Oe; (lozenges) 240
Oe; (stars) 288 Oe. X, and H in this plot are corrected for
demagnetization effects as explained in the text.
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tion ( —0.3 K) due to possible systematic error in the
thermometer calibration. From the scaling relation
[Eq. (4)] it follows that 8=3.2. It should be em-
phasized that the quality of the scaling fit is excellent
over about ten decades in the argument of the scaling
function. Note also that the high-temperature slope of
the curve (left-hand side) tends toward 1, and the
high-field slope tends toward g '=P/() +P), as ex-
pected from Eqs. (1) and (3). This scaling analysis is
much more satisfying than earlier attempts ' to
understand transitions in similar materials because the
previous methods to determine ) at a single field value
broke down for r 0, precisely where one would ex-
pect critical behavior to be observed.

As seen in Fig. 1, the experimentally measured X,
does not diverge as r 0. This is to be expected since
it is the nonlinear susceptibility X„,=X,/H which
should diverge as T T+. The intercept of a plot of
X,H 2 vs H2, as H 0, does, in fact, tend to diverge
as r 0 and this is equivalent to, and confirmed by,
the excellent scaling flt of the data shown in Fig. 2,
over the reduced temperature range —10 3 to 10
If the spin freezing were regarded as a glass "transi-
tion" one would expect that the frequency dependence
of Tg would fit a Fulcher law or perhaps a power law
indicating slowing down of the magnetic relaxations as
T Tg+. ' For this reason the frequency dependence
of X was measured between 10 and 10 Hz. However,
within our relative error of about 0.3 K (2X10 3Tg),
no frequency dependence of Tg could be detected.
These results are thus consistent with the scaling
theory for a phase transition in which X„, diverges at

C'

Figure 1 shows clearly a decrease in the peak tem-
perature at the maximum of X, as the field increases.
Earlier dc magnetization studies show the presence of
irreversibility below the peak temperature. ' If it is as-
sumed that Tg(H) represents a field-dependent transi-
tion line, then a phase diagram can be constructed as
shown in Fig. 3. This indicates that the data fit an ex-
pression of the form

with HO=7003 Oe, T (0)=140.5 K, (=1.23+0.05.
The expected behavior for H( Tg) in the SG case has
been the subject of much experimental and theoretical
work. In the low-fiel, Ising-type limit of the
theory'6 " it is found that (= —', . In addition, Fischer
and Zippelius'a have shown that the high-temperature
phase becomes unstable along a critical linc similar to
Eq. (5) with $= —,'. These authors employed an
infinite-range (mean-fiel) RMA model, with addi-
tional cubic anisotropy, in the limit of infinite anisot-
ropy. At this stage, it is not clear whether any of these
these theoretical results'6 'a are relevant to an RMA
system such as the one under discussion here. More-
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FIG. 3. H( Tg) diagram showing field dependence of T~
at 280 Hz. The curve is that given by Eq. (5). H in this plot
is corrected for demagnetization effects.

over, it should be noted that Eq. (1) predicts a field
dependence like Eq. (5) for the peak in X„with
( = (P+ y)/2. But Fig. 1 shows that there is essential-
ly no shift of the peak of X, in a field. Thus, the
results of Fig. 3 may reflect a field dependence of the
linear susceptibility in a way that is not readily correlat-
ed with theory.

It is natural to ask whether there are theoretical
results pertinent to the assumed phase transition and
scaling results of Fig. 2. Aharony'9 was the first to
study the critical behavior of the RMA Hamiltonian
and he found, for space dimensionality 1~4, that no
stable fixed point was approached. Pelcovits, Pytte,
and Rudnick20 showed that for m«2, there is no
long-range ferromagnetic order for 1~4, where m is
the number of spin components. Thus the lower criti-
cal dimensionality for a ferromagnetic transition is 4.
Aharony and Pytte2' and Goldschmidt22 showed that
the susceptibility was limited for T & T, to X,„
m(JO/D)4. This is in agreement with experiment
which shows a nondiverging susceptibility for all
strong RMA glasses. 4 Questions concerning the ex-
istence of spin-glass-like transitions or quasiferromag-
netic23 transitions (for small D) are much more subtle
and controversial. In the m- ~ limit it was shown
that there exists a spin-glass-like phase for 2 & 1 & 4,
for any nonzero D.22 2~ However, this result has been
questioned by Fisher3 who argues that the theoretical
proof of a quasiferromagnetic of spin-glass-like state in
the presence of RMA is an open question. Bray and
Moore25 concluded, on the basis of a numerical study,
that in the D ~ limit the RMA model displays an
Ising SG transition at T= 0, for 1=2; this is con-
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sistent with the picture of a spin-glass-like transition in

models with RMA. Recent numerical studiess on the
Ising SG problem suggest a genuine phase transition at
a nonzero temperature, for d = 3. On the basis of this
work Morgenestern26 has conjectured that the RMA
model with strong positive (ferromagnetic) exchange
also should possess a phase transition. We are aware
of no theoretical attempts to calculate the critical
behavior of the nonlinear susceptibility of the RMA
model, although Fahnle27 has discussed the tempera-
ture dependence of an effective nonlinear suscepbitili-
ty exponent, on the basis of a correlated molecular-
field theory.

In summary, we have presented clear evidence for
the existence of a phase transition in a strong RMA
glass. In order to test the generality of our analysis we
have performed experiments on an independent sys-
tem based on a-DyFeB. The results, to be published
elsewhere are similar qualitatively and quantitatively to
those presented here. We hope that these studies will

stimulate further theoretical work on the phase-
transition aspects of random-anisotropy and related
systems.
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Note added. —After this paper was submitted, M. A.
Feigel'man informed us of recent theoretical work2s

involving a model with long- (but finite-) range fer-
romagnetic interactions and totally uncorrelated ran-
dom axes. The predicted behavior, which confirms
the conclusions of the present paper, is that a cross-
over takes place between the preasymptotic "fer-
romagnetic" behavior and genuinely asymptotic criti-
cal behavior which is the same as for the Ising spin-
glass.
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