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Critical Properties of a Random-Anisotropy System a-DyNi:
A New Universality Class in Disordered Systems?
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The scaling properties of a random-anisotropy system (amorphous DyNi) are given for the first
time. The phase transition is shown to be of the spin-glass type, with a divergence of the nonlinear
magnetization. However, critical exponents are different from those of canonical Heisenberg spin-
glasses (e.g. , CuMn or a-GdA1). This result strongly suggests that random-anisotropy systems be-
long to a different universality class. This allo~s us to understand the scatter observed in the ex-
ponents of different Heisenberg spin-glasses as caused by a hyperscaling crossover near the freezing
temperature.

PACS numbers: 75.40.Fa

In this paper, we present the first measurements and
analysis of the nonlinear magnetization of a random-
anisotropy system. The singular behavior of the non-
linear magnetization is clearly shown; a scaling analysis
yields a coherent set of critical exponents. A compar-
ison of these exponents with those of canonical
Heisenberg spin-glasses strongly suggests that ran-
dom-anisotropy systems belong to a different univer-
sality class; as a consequence we attribute the scatter
observed in critical exponents of usual spin-glasses
(Mn- or Gd-based systems) to a crossover from ran-
dom exchange to random anisotropy, real spin-glasses
always containing superimposed weak random-
anisotropy fields arising from higher-order terms in
crystal field, electron scattering, etc.

The present study is performed on the amorphous
system DyNii 33 ~ This alloy can be considered as a
good realization of the random-anisotropy model, as

shown elsewhere. ' Zero-field and field-cooled mag-
netization measurements have been performed for a
wide range of temperatures (4.2 to 30 K) and fields
(2.4 to 150 Qe) with a dc SQUID magnetometer where
the temperature is determined to + 5 x 10 3 K and the
field to +1% in the range of a few oersteds and
+0.5% in the range of 102 Qe. A typical curve is

given Fig. 1. Notice that, in contrast to Heisenberg
spin-glasses, the field-cooled curve has no maximum.

The initial susceptibility has been obtained from
zero-field extrapolation of the isothermal lines m/h vs
h obtained for different temperatures (Fig. 2) where m
is the measured magnetization and h the magnetic
field. At first sight XD( T) looks like the susceptibility
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FIG. 1. Zero-field —cooled (dashed line) and field-cooled
(solid line) magnetization of a-DyNi.

FIG. 2. Plot of rn/h vs h in a-DyNi for different tempera-
tures between 13.42 and 17.02 K.
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of a ferromagnet with a somewhat broadened transi-
tion (Fig. 3).

Starting from Suzuki's expression of the free ener-

F(m, q) = —,
' a(1+ q) m2+ cq2G(qt t') —mh,

the initial susceptibility can be expressed as

Xo = 1/a ( T) (1+q ),

2

Xo'

Here, the approximation generally used in spin-glasses
according to which m=Xoh= h/Tf in the critical re-

where q is the Edwards-Anderson parameter and a ( T)
describes the ferromagnetic correlations. Two cases
must be considered, above and below Tf (i) . Above
the transition temperature T~, q = 0 and Xo = Xo
= a '( T). The fit to our data shows a crossover on
a(T) for decreasing temperatures from a regime in

t "' [t= (T Tf)/T—f with Tf =13.5 K and y0=1.3
+0.2, as in a ferromagnet without disorder] to a regu-

lar regime closer to the transition (13.5 & T& 16 K,
which corresponds to a freezing of ferromagnetic
correlations). In this second regime, Xo= Xoo= ( T
—10.5) 27. (ii) Below Tf, XO=XIi(1 —tt'). 3 Extrapo-
lating the form Xoo= (T 10.5) 27, —some degrees
below Tf, we find P = 1.2 +0.2 (Fig. 3). It is impor-
tant to note that, within experimental errors, the tran-
sition temperature obtained from Fischer's relation
corresponds with the temperature for which a hys-
teresis appears in zero-field-field-cooled experiments
(Fig. I).

Now let us consider the nonlinear susceptibility
Xs=Xo —m/h. From (I), it can be written

2
'1/8

f (3)
~0 ~0

gime cannot be used as a result of the drastic increase
of the regular magnetization near Tf (see Fig. 3}.
Therefore, we have plotted our nonlinear susceptibility
X, according to expression (3), where Xoh is the mea-
sured linear magnetization and t = ( T 13—.5)/13.5 the
reduced temperature, for different values of 5 and $.
The best fit has been obtained for 5=2.7+0.1 and
@=3.2 +0.1 in field and reduced temperature ranges
2.4 & h & 100 Oe and 0.005 & t & 0.25 (Fig. 4). In-
cidentally, the exponent 5 given here is not simply re-
lated to the one calculated by Aharony and Pytte4 in
their earlier theory. The other exponents can be
derived from usual scaling relations; P=$/& gives
P=1.2+0.1 in agreement with the value 1.2+0.1

determined independently from the Fischer relation,
below Tf. On the other hand, if one believes the con-
jecture according to which the irreversibility line is re-
lated to the crossover exponents @, through the rela-
tion h2~ t~, 5 ' we would have a second check for the
value obtained for @: In this analysis /=3. 2+0.l
whereas from the crossover line /=3. 1+0.1.' The
exponent y of the first nonlinear susceptibility term
can be evaluated from the equality y =g(& —I)/5; we
find y = 2 + 0.1.

As shown Table I, critical exponents of the
random-anisotropy system a-DyNi are different from
those of canonical Heisenberg spin-glasses such as a-
GdA1 or CuMn. Nevertheless, the differences are not
so marked with other systems such as AgMn where

In fa«, since the experimental demonstration
of the critical behavior of the nonlinear susceptibility
of spin-glasses, 8 critical exponents of many different
systems have been published and now it appears that
they are not all the same, in spite of error bars. "
However, such a scatter can be considerably reduced if
one assumes the coexistence of two main types of
spin-glasses: (i) the a-GdAI type where typically

y
——3 +0.1 and 5 = 5.5 +0.5, and (ii) the AgMn type

where y = 2 + 0.1 and 5 = 2.5 + 0.5. Interestingly, the
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FIG. 3. Thermal variations of the measured susceptibility
Xo of a-DyNi and of the calculated XII curve (see text). In-
set: Log-log plot of the nonregular zero-field susceptibility
(XII —Xo)/XII vs the reduced temperature tin a-DyNi.

c&- 3.2

5=2.7

FIG. 4. Scaling plot of the nonlinear susceptibility of a-
DyNi.
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TABLE I. Comparison of critical exponents measured from dc experiments. The infinite-cluster dimensionality Df is calcu-
lated from the hyperscaling expression Df=dg/ (@+P) for d=3. The exponent 7) characterizing deviations from the
ornstein-Zernike form of correlations is obtained from 2 —7) = yd/(qh+P). A dimensionality crossover appears between sys-
tems classified number 1 and number 2 (Df -2—.5 to D/=2. 2). Heisenberg spin-glasses behave almost like random-
anisotropy systems when t~„~0.1 (class 2/1).

~max Df Class

CuMn (4.6'/o)'

CuMn (1'/o)
CuMn(0. 25o/o) c

a-GdAld

CsNipeF6'
AgMn (0.4-20'/o)"
0-DyN1$

5+1
4J1

4.6 Jl
3.3 +0.4
4.2 +0.5
3.3 +0.2
3.2 +0.1

4.2 +0.1

5.7 +0.5
4.6 +0.3
5.7 +0.2
3.5 +0.5
3.1 J0.2
2.7+0.1

3.4 +0.4
3.3 +0.5
3.6 +0.3
2.7 +0.1

3.0 +0.5
2.2 +0.2
2.0 +0.1

1,1 +0.2
0.7
1

0.7
1.2+0.1

1 +0.1

1.2 +0.1

2 +0.4
1.6+0.4
1.9 +0.4
1,3 +0.2
1.8 +0.2
1.3 J0.1

1.5 +0.1

0.30
—0.06

0.10
0.08
0.33
0.46
0.63

2
1

0.7
0.15
0.1

0.1

0.25

2.4
2.5
2.5
2.5
2.3
2.3
2.2

1

1

1

2/1
2/1

2
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exponents found for the random-anisotropy system a-
DyNi, y = 2 +0.1 and 5 = 2.7 + 0.1, are very close to
those of the AgMn type. All these observations be-
come coherent within the following scenario:

We admit, first, that Heisenberg spin-glasses (a-
GdAI type) and random-anisotropy systems (a-DyNi)
do not belong to the same universality class (which is
not surprising since their random character issues from
different random fields), and second that usual spin-
glasses must contain, to some extent, weak random-
anisotropy fields of diverse origin (crystal-field effects
on 5d electrons for Gd-based systems, or other high-
order types of anisotropies in Mn-based systems, dipo-
lar effects, etc). Therefore usual spin-glasses should
present, when the temperature approaches Tf, a cross-
over from Heisenberg spin-glass to random-anisotropy
exponents, similar to the Heisenberg-to-Ising cross-
over observed in ferromagnets where a weak uniform
anisotropy is always present (even in S type of ions).
In fact a similar crossover has been predicted in spin-
glasses by Kotliar and Sompolinsky' in a mean-field
model. Recently, Campbell, de Courtenay, and Fert'3
have interpreted irreversibility lines of CuMn alloys in
terms of such a crossover. Furthermore, in two very
recent studies, Yeshurun and Sompolinsky'4 and de
Courtenay et ai. '5 have shown that the spin-glass criti-
cal exponents of AgMn correspond to anisotropy-
dominated conditions, as is predicted in the present
scenario.

Finally, let us give a scaling approach for the spin-
glass to random-anisotropy crossover. Generalizing
expression (1) of Aharony and Pytte, 4 we express the
magnetization as a function of a random field 5:

m= Itl~of(/ Itl ~o, altl ~'), (4)

where t = [ T Tf(b, ) )/ T-
In the particular case of a random-anisotropy system

5= (D/J)2 is such that Tf(0) = T, and therefore Po
and $0 are the critical exponents of a ferromagnet.
For a spin-glass b, = (J/Jo) is the variance of the dis-
tribution of exchange interactions.

If b e 0, expression (4) may be written, for

with

&a =@~ —
&o,

«r»& Itl4'a,

/t
/tolled, (/ g iso/4o, )

For a given type of random field 5, the exponents
@0 and $a characterize different types of crossover:
first, the crossover when h2= t ', between field- or2@0

temperature-dominated regions, which has been al-
ready observed in spin-glasses9'6; second, the cross-
over when 5= t ~ between thermal critical fluctua-
tions and static fluctuations of the random field.
These last fluctuations can be dominated by the ap-
plied fiel giving rise to a third crossover when
H = ~'~".

In a real Heisenberg spin-glass, random-anisotropy
fields should be relevant near Tf if

(D/J)'(J/Jo) '» t

i.e., if QD/J & QJ/J, . These exponents can be evaluat-
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ed from the equality (6). Taking pso =0.7, ptt„= 1.2,
and 7'o = 1.3, we get @J~J ——1.9 and AD( J ——2.4.
Random anisotropy effects should dominate the criti-

cal properties of disordered systems if (D/J) &D(J

(D/J)z ~ /t
D~' '. Taking go=1.4, we get4D J/4o

D/I ) t'z and D/1 & ho s~

If critical exponents of random magnetic systems are
interpreted in terms of a percolation mechanism of
(~S&S&)z) correlations, 5'6 then hyperscaling leads to
the fractal dimensionality D = 2.5 for Heisenberg
spin-glasses and D=2 for random-anisotropy sys-
tems. This suggests that different percolation mechan-
isms take place in these two types of systems.
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