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%e report the experimental observation of quantum beats in the coherently scattered radiation

from nuclei excited by synchrotron-radiation pulses. The measurements were made with "Fe-
enriched yttrium-iron-garnet crystals, by reflection from two parallel crystals using the pure nuclear

(002) Bragg reflection. The resulting beat pattern gives a sensitive direct measure both of the hy-

perfine splittings of individual iron nuclei, and of the energy shifts between different nuclear sites.

PACS numbers: 61.10.Pa, 07.S5.+n, 42.10.Qj, 76.80.+y

In a previous experiment, ' the possibility of using
resonant Mossbauer filters to monochromatize syn-
chrotron radiation to about 10 s eV in the 1-A x-ray
region was demonstrated. This was achieved by dou-
ble nuclear Bragg diffraction from 57Fe-yttrium-iron-
garnet (YIG) single-crystal films set for the electroni-
cally forbidden (002) reflection. Both the frequency
spectrum and time response were measured. With an
improved time resolution, we have now observed the
predicted quantum beats from nuclei excited by syn-
chrotron radiation. 2 3

As pointed out by Trammel and Hannon, 2 there will

be quantum beats in the time spectrum for both the
coherently and the incoherently scattered y rays and
for the conversion electrons, arising from interference
between the various hyperfine transitions. The essen-
tial feature is that the sharp synchrotron-radiation
pulse excites the various nuclear-excited-state sublev-
els suddenly and coherently, which then "oscillate" at
their various natural frequencies, giving beats at the
difference frequencies in subsequent decays. For the
incoherent processes, there is only interference between
transitions to the same ground state, so that here the
beat frequencies reflect the hyperfine levels of the ex
cited state, with no information about the ground-state
splittings or of the shifts between different sites. For
the coherent scattering, there will be beats

Qtt(m, n, p;m', n', p') =co~(p) —co ~ .(p'),

corresponding to the difference frequencies of aii al-
lowed nuclear transitions to „(p)from al!the different
nuclear sites p, from which the hyperfine splitting of
both the excited and ground states may be found, as
well as any energy shifts between different sites.

Our experiment measures the quantum beats of the
y rays coherently scattered from YIG. The experi-
mental arrangement at Hamburger Synchrotron-

strahlungslabor (HASYLAB) (Deutsches Elektronen-
Synchrotron DESY) was the same as in the previous
experiment, ' with the exception that the Ge detector
was replaced by a NE102 plastic scintillator with an
XP2020Q phototube. This improved the time resolu-
tion (FWHM) from 18 to 1.7 ns. With this time reso-
lution the fastest components expected in the YIG
time spectrum can be resolved. However, the use of
the plastic scintillator leads to new background contri-
butions to the time spectrum which must be taken into
account. First, because of the poor energy resolution
of the detector, there is a strong increase of the
prompt time peak as inelastic scattering events and
higher harmonics are no longer rejected by the elec-
tronics. Second, there is a serious time-independent
background noise from the photocathode. By cooling
of the photocathode to —20'C and proper setting of
the threshold of the constant fraction discriminator,
this rate was reduced to 0.1 Hz, well below the 1-Hz
resonant signal. Finally, there is a background due to
residual gas ions created in the phototube by the
prompt pulse, giving a delayed contribution which
starts around 240 ns. Fortunately, this delay is greater
than the quantum beat periods for YIG.

The results of our measurements are shown in Fig.
1. The solid line gives the theoretical calculation,
which we now discuss.

The possibility of pure nuclear Bragg reflections in
57Fe-YIG has been discussed by Winkler et a1.4 The
main points are as follows: YIG has a complex unit
cell with 40 Fe atoms which are distributed over 16 a
sites (each surrounded by a distorted oxygen oc-
tahedron) and 24 d sites (each surrounded by a distort-
ed oxygen tetrahedron). The 24 d sites are further
subdivided into three equal sets by the direction of the
electric-field-gradient (EFG) symmetry axis relative to
the cubic crystal axes, with the di, d2, and d3 sites
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for an m-fold reflection from parallel crystal films.
R(co, p) is the 2X2 reflectivity matrix for the co-
herent elastic reflection from a single crystal of plane-
wave radiation of frequency co at incidence angle $.
We have calculated R(cu, g) using the full deter-
minant solution to account for polarization mixing,
and using the diagonalization procedure given in Refs.
4 and 6 to get the proper scattering amplitudes for nu-
clei under the influence of a crossed EFG and B;„,.
Figure 3 gives a 3D plot of the resulting time
response, ~R(r, g)i ~2, for a double reflection from
YIG of incident radiation of polarization o.. This must
be integrated over the beam divergence and any mosa-
ic spread of the crystals. More generally, one must
also allow for angular deviations between crystals in a
multiple reflection.

Although the dynamical calculation is considerably
more involved than the Born approximation, the
theoretical fit still depends very sensitively on the hy-
perfine parameters. For our particular YIG reflection,
although the dependence is more complex, it is still
true that the delay to peak response, the period of the
slow oscillations, and the positions of destructive can-
cellation in the fast beat period are all determined by
the EFG splitting, while the fast beat pattern is deter-
mined by the magnetic splitting. 8

The solid line in Fig. 1 gives our calculation for the
time response. Here we have taken an incident Gauss-
ian spread with o = 12 grad centered at peak Bragg re-
flectivity. Optimum simulation of the spectrum is ob-
tained with ilQg=6. 5I' and t0~=73.91". The latter
value represents a 4'/0 shift from the data of Ref. 4.
This is explained in part by a higher operating tem-
perature, and by a correction of 2% to the previous
determinations.

In summary, we have observed hyperfine quantum
beats from nuclei excited by synchrotron-radiation
pulses, and have demonstrated that it is possible to
determine magnetic and EFG hyperfine splittings.
The time measurements have the potential for giving

more accurate determinations of hyperfine splittings
than absorption measurements because the energy
separations are directly determined by the beat fre-
quencies, and because the measurements are on a
direct time scale rather than on a calibrated velocity
scale. We will carry out measurements with new
orientations of B;„,in a temperature-stabilized en-
vironment. For Bi (ko, kf), the beats will exhibit the
splitting between the + 1 and —1 resonances, in addi-
tion to their separate splittings. We are also attempt-
ing to use a single reflection in order to improve the
signal and to simplify the data analysis.
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