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Neutron-Star Masses as a Constraint on the Nuclear Compression Modulus
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The observed masses of neutron stars are used to shed some light on the current controversy
concerning the value of the nuclear compression modulus. %e find that values less than about 200
MeV are incompatible with the observed masses.

PACS numbers: 21.65.+f, 97.60.Jd

There is currently some controversy concerning the compression modulus of nuclear matter at saturation. For a
long time, a careful analyses of the giant monopole resonance in nuclei has been accepted as providing this proper-
ty. The indicated value is around 220 MeV. More recently, Brown and Osnes have claimed that it is much small-
er, perhaps as small as 100 MeV. 2 In this note we shall use the observed masses of neutron stars to indicate a
lower bound on the compression modulus. 3

The matter of a star will be arranged in accord with the condition of hydrostatic equilibrium, that is to say the
pressure of the matter everywhere balances the force of gravity whose source is the energy density of the star.
Thus both ingredients of the equation of state, pressure and energy density, enter the equations of star structure.
In a neutron star the concentration of energy is so high that the metric of space-time is curved, and the condition
of equilibrium has to be framed in terms of the general theory of relativity, which was done long ago for static
spherically symmetric stars by Oppenheimer and Volkoff (OV). The equations are
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The first one expresses the balance of net pressure dp
acting on a spherical shell with the force of gravity act-
ing on the mass dM of the shell, and the second tells
how the mass is to be calculated from the energy den-
sity e. For a given equation of state, the OV equations
can be integrated outward for an arbitrary central den-
sity, until the pressure is zero. The radial coordinate
at that point is the radius of the star, and its gravita-
tional mass is given as the solution of the OV equa-
tions. By choosing a sequence of central densities, one
can generate the star mass as a function of central den-
sity for the given equation of state. The mass will
have a maximum value, known as the limiting mass.
An acceptable equation of state must yield a limiting
mass at least as large as the largest known neutron-star
mass, about 1.4 solar masses.

In the following we shall fit the parameters of a
theory of matter to the known bulk properties of nu-
clear matter, except for the compression modulus,
which is allowed to take a sequence of values between
100 and 285 MeV. We then calculate the equation of
state for dense neutron-star matter, which includes
hadron degrees of freedom that are not found in the
nuclear ground state. For each of these we solve the
equations of star structure, to learn which are compati-
ble with the observed star masses.
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Since the cores of neutron stars are very compact,
having a density of a few times nuclear density, the
matter is relativistic. We shall therefore employ a
theory of matter that is relativistically covariant. This
is the relativistic hadron field theory involving baryons
interacting through the exchange of scalar (o ) and
vector (to) mesons, and in isospin-asymmetric matter,
also the isovector p meson. This theory, solved in the
mean-field approximation, is known to account for the
bulk properties of nuclear matter, as well as a large
number of single-particle properties of finite nuclei. 4

For neutron stars we must generalize the theory.
Stars are essentially charge neutral because the repul-
sive Coulomb force is so much stronger than the grav-
itational one. A star composed solely of neutrons sat-
isfies this condition but is unstable against P decay.
The neutron at the top of the Fermi sea has enough
energy to decay into a proton and electron. So pure
neutron stars cannot exist. As the density increases
other baryon thresholds will be reached and hyperons
also will be present, and perhaps the h. Therefore we
should allow for a generalized P equilibrium in dense
neutron-star matter, allowing whatever baryons are
dictated by their masses and the interactions to partici-
pate. This generalization was carried out previously,
and we do not recount the details. s The Lagrangean is
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Here B denotes a baryon spinor and is summed over
n, p, A, X 0 +, . . . to convergence. The p meson is
coupled to the total isospin current J, the &o are the
free Lagrangeans of the mesons, and the last term is
summed over the leptons. Another possible coupling
for the p meson is gauge coupling, which we do not in-
vestigate.

If pion condensation occurs, the equation of state
will be softened, and the limiting mass will be lowered.
Negative pions will condense when the electron chem-
ical potential attains the value of the effective pion
mass in the medium. We will consider two limiting
cases, one for which the pions do not condense, be-
cause of an assumed large effective mass. This will
provide an upper bound on the lowest nuclear
compression modulus that is comparable with ob-
served neutron stars. The other limiting case will al-
low free pions to condense with their vacuum mass.
They will do so when the electron chemical potential
attains the value of the pion mass. This case will be
the opposite extreme, because the attraction of pions
and nucleons occurs in the p wave, and requires
momentum. In a related work which studied the fully
developed condensate in neutron star matter, having
however only neutron and protons in the baryon popu-
lation, 6 the effective mass was about 170 MeV, which

means that pions would condense at a density thresh-
old somewhat higher than for free negative pions. Al-
lowing the condensation of free pions will therefore
provide a lower bound on the acceptable nuclear
compression modulus, as concerns the role of pions.

When the field equations following from Eq. (3) are
solved with the subsidiary conditions of charge neu-
trality and chemical equilibrium, we obtain a solution
corresponding to neutron-star matter. When they are
solved with the subsidiary condition of isospin sym-
metry, we obtain the solution for symmetric nuclear
matter. The parameters of the theory are chosen to
reproduce the bulk properties of uniform symmetric
matter, except that the compression modulus is treated
as unknown and allowed to take a sequence of values.
There are five parameters:

g /m, gJm„, g~/mp, a, b.

The bulk properties are B/A =15.95 MeV, saturation
density p=0. 145 fm 2, symmetry energy coefficient
a,„-36.8 MeV, 7 the compression modulus K, and
one additional parameter, say the nucleon effective
mass at saturation, which we assume to be around 0.8,
and to which the results are insensitive within reason-
able variation.

The energy density and pressure are given in this
theory by the expressions
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FIG. l. The equation of state for various compression moduli (a) when free pions condense, and (b) when they do not.
These are limiting cases for the role of pions.
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FIG. 2. The masses of neutron stars as a function of their central density for various nuclear compression moduli, in the
two cases (a) free pions condense and (1) pions do noi condense. These are limiting cases as concerns the effect of pions.

The equation of state showing pressure as a function
of energy density is shown in Fig. I for several values
of the nuclear compression modulus. The parameters
of the theory corresponding to the various compres-
sion moduli are shown in Table I. The limiting cases
regarding the role of pions are shown in the two parts
of the figure. By comparison one can see the softening
effect of pion condensation. The hyperons also soften
the equation of state in comparison to a theory allow-

ing only the neutron and proton. s The OV equations
for star structure are solved for each of these equa-
tions of state, and the results are shown in Fig. 2.
Here we see that nuclear compression moduli of less
than about 200 MeV are incompatible with the ob-
served neutron-star masses.

The two limiting effects of pion condensation on
neutron-star masses are shown in Fig. 3 for K=200
MeV. It can be seen that, in this case, pions do not af-
fect the limiting mass. This is true for K & 200 MeV.
For K & 200 MeV, the softening effect of pions does
reduce the limiting mass as can be seen from Fig. 2.
In either case, our conclusion that K ( 200 MeV is in-
compatible with neutron-star masses is unaffected by
the question of whether or not pions condense.

In summary, we have solved a relativistically covari-
ant field theory of nuclear matter in the mean-field ap-
proximation, for both symmetric nuclear matter and
neutron-star matter, involving a generalized beta
equilibrium between nucleons, hyperpons, isobars,
and leptons and in two limiting cases in which pions
condense at an effective mass equal to the vacuum
value and in which they do not condense because of an
assumed effective mass which is too large compared to
the electron chemical potential. The parameters of the
theory were fitted to the bulk properties of nuclear
matter except that the comparison modulus was treat-
ed as unknown. The mass curves of neutron stars
were calculated for various assumed values of the
compression modulus, and it was found that values
less than about 200 MeV are incompatible with ob-
served neutron-star masses.

This work was supported by the Director, Office of
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TABLE I. Parameters of the theory that fit the bulk prop-
erties of nuclear rnatter and have an effective nucleon mass
about 0.8, but for which the compression modulus takes on
the indicated values.

(g Im )' (gJm„)' (gJmp)'
(fm') (fm') (fm')

285
200
150
100

9.96
8.98
8.98
8.98

5.35
3.20
1.87
0.622

6.20
6.07
6.65
6,81

0.004 0.007
0.021 0.006
0.051 0.055
0.059 1.46

log (density grn/cc)

FIG. 3. The effect of pion condensation on neutron-star
masses at E =200 MeV.
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