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Minimax Principle for the Dirac Equation
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The problem of calculating the eigenvalues of the Dirac equation by the finite-basis expansion
method is studied. Bounds for the eigenvalues are obtained explaining the numerical results on the
spectrum that have been observed previously. It is argued that the problem of variational collapse
can be avoided by finding the minimum over the wave-function large component of the maximum
over the wave-function small component of the energy functional. A numerical example is dis-
cussed.

PACS numbers: 03,65.6e, 02.70.+d, 31.15.+q

There has been a great deal of recent interest in the
problem of solving the Dirac equation for particle
bound states by finite-basis expansion methods. This
problem is becoming increasingly important since the
study of relativistic effects in molecular physics is of
increasing interest and finite-basis expansions are an
important practical method of constructing molecular
wave functions. The problem of solving the Dirac
equation in a finite basis has proved to be more diffi-
cult than the corresponding problem for the
Schrodinger equation because of the so-called "varia-
tional collapse. "' The problem is that one is seeking a
highly excited state above all the negative-energy
states. It turns out that it is not always possible to
identify which physical state, if any, corresponds to a
particular state arising from a matrix diagonalization,
and that if nonlinear parameters are varied, almost any
values for the matrix eigenvalues may be obtained.

In this article the matrix problem associated with the
Dirac equation will be analyzed and bounds for the
eigenvalues will be obtained. The Dirac equation and
its matrix approximation can be formulated in terms of
a minimax principle and a version of the Hylleraas-
Undheim-MacDonald theorem2 3 (HUM theorem) ap-
plies to the matrix formulation. The advantage of this
minimax principle is that, as well as providing a for-
mulation for the matrix problem, it provides a guide
for the determination of nonlinear parameters.

There is no difficulty for the Schrodinger equation

since it has been shown by Poincare4 that e,i~i ~ e,
where etta is the i th eigenvalue of the matrix approx-
imation and e; is the i th exact eigenvalue. (In this ar-
ticle the eigenvalues of an N x N matrix are always tak-
en to be ordered ei ~ e2 ~ . . . ~ ev. ) Thus one can;-
for example, minimize e, on nonlinear parameters
and be assured of improving the energy and wave-
function approximations. This is not possible for the
Dirac equation since a particular eigenvalue can de-
crease arbitrarily into the hole-state continuum. In
connection with this, we note that the HUM theorem
asserts that as the size of a finite basis increases, a par-
ticular eigenvalue decreases, i.e., e;t~+'i ~ e;i~i. For

~, et'~ e; if the basis is complete in the first
Sobolev space (i.e., for first derivatives).

In this article the two-component radial Dirac equa-
tion in the form given by Drake and Goldman5 (to be
referred to as DG) will be considered:

V( r )g + c ( d/ dr + K/ r )f= eg,

c(d/dr+tc/r)g+ [ V(r) —2c2]f= ef.

The functions g and fare traditionally called the large
and small components of the wave function, and e is
the energy relative to c2 (m=t =1). All the con-
siderations here apply equally, ho~ever, to the three-
dimensional, four-component problem.

We consider introducing an orthonormal basis I@;I

for the large components truncated by 1 ~ i ~ M and
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an orthonormal basis (X&I for the small components
truncated by 1»j» N. In practice, finite nonorthog-
onal sets are used but one can imagine augmenting
these to form dense sets and carrying out the Gram-
Schmidt orthogonalization.

The Dirac equation, projected into the truncated
basis, is the (M+ N) x (M+ N) matrix equation

f

cH' x x
cIV U —2c2 (2)

4)
N CU

l

l

where

=(&, (&Id + I jy, ),

u „=(X,VX„), (&)

1» i j» M; 1-»m, n -»N.

It has been found by DG that, for a reasonable
choice of basis sets, with M = N, the eigenvalue spec-
trum of Eq. (2) splits, with the first N eigenvalues
below —2c, apparently representing hole states, and2

the first few eigenvalues beyond the Nth representing
the lowest particle bound states. On the other hand, it
has been found by Gazdy and Ladinyi6 that if the basis
is not chosen appropriately, the eigenvalues represent-
ing particle bound states may decrease uncontrollably.

It is possible to obtain useful information about the
eigenvalues of Eq. (2) by eliminating y to give the
M x M matrix equation

Q(e)x= [ V+ c2W (2c2+e —U) '8']x
= ex. (4)

In this form, the equation resembles the Schrodinger
equation, and if a complete set of small-component
states were included, it would be the matrix form of
the Schrodinger equation in the limit c ~. It has
been emphasized by Kutzelnigg7 and Grant that the
problem of variational collapse is caused by the incom-
pleteness of the small-component basis, so that the
kinetic energy is underestimated.

The eigenvalues of Q(e) defined in Eq. (4) will be
denoted by A. ,(e), i=1,2, . . . , M The eigenvalues
of Eq. (2) are the solutions of the implicit equation

),(e) = e.

The behavior of the eigenvalues of Q(e) is shown
in Fig. 1. The derivative of Q(e) with respect to e is
negative definite so that X,(e) is monotonically de-

creasing in e. If Q(e) is calculated in the basis in
which the matrices Vand Uare diagonal, we have

Q(e)ig= &i5tl+ c g ki(2c + e —uk) iviti. (6)
k=1

It is seen that for e + ~, )i. ,(e) v, where u, is an
eigenvalue of V. Furthermore, Q(e) is singular at
e=uj —2c where u& is an eigenvalue of U. For e2

Vp

Vl

FIG. l. Behavior of the eigenvalues of the matrix Q(e)
defined by Eq. (6) in the case M=2, N=3. The intersec-
tions of the curves with the line e = X, sho~n by circles, give
the eigenvalues of Eq. (2).

close to uj, Q(e) can be expressed as

Q(e) = A (e) + (2c'+ e —u~) 'ww',

where A (e) is continuous at uj. Using a basis of w
and M —1 vectors orthogonal to w shows that there
are M —1 eigenvalues continuous at uj and one eigen-
value that behaves like (2c2+ e —u )J

Inspection of Fig. 1 shows that the solutions of Eq.
(5) are divided into two sets. The smallest N roots
satisfy ej ( uj —2c2. The largest M roots satisfy
e~+, ) u, . For a purely negative potential, u, & 0 and

e& & —2c for 1»j» N. A discussion similar to the2

above has been given previously by Lowdin. 9

This result explains in part the observation by DG
on the splitting up of the spectrum into N apparent
hole states and (with M= N in their case) M apparent
particle states. It was also found by DG that for the
Coulomb problem, the eigenvalues ez+; apparently
converge downwards to the exact particle bound-state
energies. There is an exception for K )0; in this case
e~+i approaches a so-called spurious root. These
results obtain, however, because DG use an appropri-
ate basis; it will be argued below that they are not valid
for a general choice of basis.

The bounds on the matrix eigenvalues show that the
particle bound-state energies should be sought among
the largest M eigenvalues of Eq. (2). We will concen-
trate on the eigenvalue ez+ i which presumably should
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(,H )e = min max
s

(7)

should be sought where 0 is the Dirac Hamiltonian
and g and fare the large and small components of the

approximate the particle ground-state energy; e~+~
will be denoted by e(MN). The HUM theorem
shows that e(MN+1) ~ e(MN). (The largest ei-
genvalues of a matrix increase, just as the smallest
eigenvalues decrease, when one more basis vector is
added. ) Therefore, as N increases, for fixed M,
e(M, N) increases.

If the potential is negative, the eigenvalues of Q(e)
are bounded above by the eigenvalues of the problem
with U=O. The eigenvalues of this problem are in
turn bounded by the eigenvalues of the nonlinear
problem,

[ V+ c2(2c2+ e) 'T]x= ex,
where T is the Schrodinger kinetic-energy matrix in
the large-component basis. It is easy to see from an
argument similar to the one above that this nonlinear
problem does have M eigenvalues. Therefore e(M,
N) is bounded above independently of N and, as N in-
creases, e(M N) increases to a finite limit e(M, ~).

This limit is the result that would be obtained if the
small-component basis were complete. It is also seen
that e(MN) provides a lower bound to e(M, ~); that
is, e(MN) is a lower bound to the result obtained if
the truncated large-component basis and the complete
small-component basis are used. Furthermore, the
HUM theorem implies that e(M+1,N) ~ e(MN).
In the limit N ~, this becomes e (M+ 1, ~)
~ e (M, ~), so that e (M, ~), if it were known,
would provide an upper bound to the exact energy.
This is certainly true if the potential is bounded below
by, say, Vo. Then e(M, ~) ) u, & Vo. A Coulomb
potential is not bounded below; however, one can then
consider a comparison potential that is bounded below
such as the finite-nucleus case or a potential cutoff at
small r. Then e(M, ~) is bounded below by the ap-
proximate eigenvalue which in turn is bounded below

by the exact Coulomb eigenvalue, independently of
the comparison potential. Thus, e(M, N) provides a
lower bound to some exact upper bound. This does
not seem very useful, but it is probably the best result
obtainable. It shows, however, that if there are non-
linear parameters, the correct way to treat them is to
choose the small-component parameters to maximize
e(M, N) and then to choose the large-component
parameters to minimize e(M, N). A discussion similar
to this has been given recently by Wood, Grant, and
%ilson. '0

These considerations show that the appropriate vari-
ational formulation for the Dirac equation particle
ground state is that

spinor P. Consider the case M=N=1 with basis
functions g and f. If g is the exact large-component
wave function, the maximum over f is obtained for
the exact f. On the other hand, if g is arbitrary, the
maximum over fyields an upper bound to the exact e.
Conversely, it is readily apparent that the variational
problem, Eq. (7), leads to Eq. (1). Furthermore, if g
and f are expanded in their finite bases, Eq. (7) leads
to Eq. (2).

The i th excited state can be characterized also by
Eq. (7) if g is a linear combination of i arbitrary func-
tions, f is arbitrary, and e is the largest eigenvalue of
the (i+ I)-dimensional matrix problem. This pro-
vides a generalization of Poincare's principle to the
Dirac equation.

These results show that, in practice, to obtain an es-
timate for the energy of the i th particle bound state,
one should search for the minimax of ez+, on any
nonlinear parameters in the large and small com-
ponents. The validity of this approach has been con-
firmed in a number of calculations; a simple example
is discussed below.

It has been observed by various authors7 " that, if
the finite bases are chosen so that for any g in the span
of the large-component basis, (d/dr+~/r)g is in the
span of the small-component basis, then e(M, N) is an
upper bound to the exact energy. This can be readily
seen from the above discussion. In this case

(X~+~, [d/dr+~/r)P, ) =0, m=1, 2, . . . . (8)

The matrix of Eq. (2) is reducible into independent
blocks. Enlarging the small-component basis has no
effect and e(M N) = e(M N+ m) = e(M, ~) .

Similarly, if for any f in the span of the small-
component basis, ( —d/dr + K/r )fis in the span of the
large-component basis, e (M N) = e (~,N). As N in-

creases, e(M, N) increases to the exact energy, and
e(M, N) is therefore a lower bound.

To illustrate the minimax principle, we consider the
problem studied by DG, the Coulomb problem with
Z = 92 and c = 137. Their results are presented largely
for the case ~ = —1; the case ~ = 1, which has the add-
ed complication of the spurious root, will be con-
sidered here. A simple calculation with M= N= 1,
the basis functions being $,(r) =re ' and X&(r)
= re i', has been carried out. It is found that there is
a minimax in the energy functional, as a function of
the nonlinear parameters a and p, for n =31.7 and

p = 123.0. The energy at this point is —1264.9 which
can be compared with the exact 2p, iq energy of
—1257.54. Values of the energy functional in the
neighborhood of the minimax are given in Table I.
The minimum in n for the maximum in p close to
a = 32, and p = 125, is evident; on the other hand, if n
were varied for fixed p almost any result could be ob-
tained.
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TABLE I. Values of the 2p~/2 Coulomb energy for Z = 92 calculated with M = A'= 1 for
various values of the nonlinear parameters a and i3.

115.0
120.0
125.0
130.0
135.0

—1262.04
—1262.59
—1265.93
-1271.68
—1279.49

31.0

-1265.83
—1264.32
-1265.89
—1270.13
—1276.70

—1269.22
—1265.43
—1265.04
—1267.60
—1272.74

33.0

—1272.35
—1266.09
-1263.55
—1264.25
—1267.79

-1275.37
—1266.46
-1261.57
—1260.23
-1261.99

The problem of determining nonlinear parameters
variationally is not an easy one. The most practical
strategy is to choose the nonlinear parameters varia-
tionally for a simple problem, such as the one above,
and then to enlarge the basis. As an example, the en-
ergy has been calculated with the parameters above
and M=N=8, the bases being $t(r)=rte
Xt ( r ) = r'e ~", 1 ~ i ~ 8. The energy result in this
case is —1257.58.

In this approximate calculation for the 2p, i2 energy,
the spurious solution has completely disappeared. If,
however, we try to find the exact solution using the
basis appropriate to the problem, $t(r) = r~+t 'e
Xt (r ) = r'r+ ' 'e @"

y = [K' —(Z/c)']'i' i = 1, 2, and
searching on o. and P, the exact solution occurs as e4
rather than e3. The minimax search on e3 leads as ex-
pected to an approximate result for the 2pti2 energy.
This problem is a special one associated with the exact
solution and the special basis chosen and should not
arise in an approximate calculation.

The problem of spurious roots has been addressed
by Goldman, '2 who has shown that in the atomic case
they can be rejected by imposition of an energy-
independent boundary condition on the ratio g/f for
r Q. This approach is not directly applicable to the
molecular-orbital problem, however. Application of
the minimax principle should reduce or eliminate the
problem with spurious roots if nonlinear parameters
are used. I note in passing that another criterion that
may be useful in the molecular-orbital case is to calcu-

late the Schrodinger energy by use of the large-
component wave function. It is found that for the
spurious solutions found by DG this is large and posi-
tive rather than approximating the Dirac energy as it
does for the physical roots.

The author is indebted to S. P. Goldman for explain-
ing this problem to him, and for valuable discussions.
This work has been supported by the Natural Sciences
and Engineering Research Council of Canada.
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