
VOLUME 57, NUMBER 8 PHYSICAL REVIEW LETTERS 25 AUGUST 1986

Dyon Analogs in Antiferromagnetic Chains
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A close analogy is pointed out between dyons (particles with electric and magnetic charge) in
grand-unified theories and solitons in antiferromagnetic chains. For nonzero topological angle 8,
dyon electric charges are noninteger: q = ( n +8/2m ) e. An analogous phenomenon occurs in anti-
ferromagnets ~ith alternating interactions.

PACS numbers: 75,10.Hk, 14.80.Hv

The well-known reversed charge-spin states in poly-
acetylene' are a condensed-matter realization of a
phenomenon first discovered in particle physics2: The
fermionic ground state in the presence of a soliton can
have a fractional fermion number. There is another
well-known fractional effect connected with solitons in
particle physics: Dyons in the presence of a nonzero
topological angle, 8, have fractional electric charges
e(n +8/2m), where n is an integer. 3 It is the purpose
of this Letter to point out a possible condensed-matter
realization of this effect.

In unified gauge theories, the magnetic monopole
appears as a time-independent classical solution. " The
dyon is a more general time-dependent solution5 (in
temporal gauge) with E, the non-Abelian electric field,
periodic and B, and non-Abelian magnetic field, the
same constant fleld as before. This time dependence
corresponds to a periodic gauge rotation. It can be
parametrized by a collective coordinate P(t), where P
is an angular variable. The Lagrangean for P, in the
absence of a topological term, is simply that of a rigid
rotator: I.= (I/2)P2 (where I, the moment of inertia,
is a constant). The angular momentum variable conju-
gate to P is the rescaled electric charge, i= q/e = iP.
Thus the Hamiltonian for the electric charge, q, is
H-(q/e) /21 and, with the imposition of periodic
boundary conditions on P, q/e has integer quantum
numbers. The quantum states can be obtained by
semiclassical quantization of the periodic classical solu-
tions with frequency P=cu=q/el. The fact that dyon
states come in degenerate pairs of opposite electric
charge is a consequence of CP (charge and parity)
symmetry which reverses electric, but not magnetic,
charges. A topological term, j d4X(8/4n )E B, can be
added to the action. Since, in Euclidean space, this is a
topological invariant, taking only values in, where n is
an integer, the physics is expected to be periodic in 8.
Since the topological term is a total derivative it has no
effect in perturbation theory; it does produce effects
O(e s «) as a result of instantons. However, it has
an effect O(1) on the dyon, because the quantity E B
is nonzero for a dyon. Since the topological term is
odd under CP symmetry but even under C, dyons
need no longer come in degenerate pairs with the same

magnetic charge but opposite electric charge. There is
still a pairing of dyons with opposite electric and mag-
netic charges. To calculate explicitly the effect of the
topological term on dyons we observe3 that the
Lagrangean for the collective coordinate P is shifted by
a term linear in 8 and P: L = (I/2)P2 —(8/2m)P. The
breaking of CP or equivalently T invariance is manifest
as is the fact that the added term is a total derivative.
The momentum conjugate to p is shifted to i= la&
—8/2m. The Hamiltonian becomes H = (1/21)
&& (i+8/2n ) Th.e observable electric charge is not el
now but is the unshifted quantity eire, since external
currents do not couple to the topological term. Thus
the dyon electric charge is now fractional,
q = e ( n +8/2n ), where n is an integer. Furthermore,
rotational states with opposite angular momentum,
+ n, correspond to classical motions with frequencies
(+n+8/2n)/I which are not opposite and corre-
spondingly have different energies.

We now turn to a possible condensed-matter analog
of fractionally charged dyons. Thus, consider an anti-
ferromagnetic chain with Ising anisotropy:

H =I X, [S, S(+ ) + aSfSf+ )
—b (Sf) ]

(l )0), S2= s(s+1)
(we will use units in which il =1). This Hamiltonian
has a U(1) symmetry (rotation about the z axis) and
two important discrete symmetries: time reversal T,
S —S, and translation by one site P, S, S,+ &. For
a range of parameters with sufficiently large positive a
and b, P and Tare expected to be spontaneously bro-
ken to PT. In the large-s (semiclassical) limit the
ground states are well approximated by the Neel states
St= +&( —I)'z. Whenever a discrete symmetry is
spontaneously broken in such a one-dimensional sys-
tem one expects solitons to exist which interpolate
between the ground states. The semiclassical soliton
solution6 7 (which will be constructed explicitly below)
exhibits a rotation of the spins on even sites from the
north to the south pole with some fixed (and arbitrary)
polar angle as we move along the chain. (The spins on
odd sites rotate from south to north. ) This solution
plays a role in the present discussion which is analo-
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gous to that of the magnetic-monopole classical solu-
tion. As in that case, there is a more general time-
dependent solution. 7 The spins comprising the soliton
may precess about the z axis (with a sense of preces-
sion which does not alternate from site to site; see Fig.
1). Exactly as before, one may introduce a collective
coordinate, P, to parametrize this precession. The al-

lowed precession frequencies P=co are integers, n.

The symmetry responsible for the pairing of "dyon"
states with opposite frequency is now PT which takes
soliton into soliton but reverses the sense of preces-
sion. Let us now generalize the model of Mikeska6
and Haldane7 and consider a modified Hamiltonian in
which PT is explicitly broken to T. It is known that di-
merization can occur in one-dimensional antiferromag-

nets as a result of the spin-Peierls effect. s This leads
to a shift in the Hamiltonian H H+ciX,. ( —1)'S,

S,+i. (More generally, the anisotropic terms coukl
pick up alternating pieces also. These could be includ-
ed in the present analysis; I omit them for simplicity.
In cases where both the anisotropy and the alternation
are small, the alternating anisotropy may be second or-
der in small quantities. ) This extra term breaks P
symmetry but preserves T; thus we might expect it to
destroy the symmetry between dyons of opposite pre-
cession frequency. To understand how this can hap-
pen, note that the effect of the precession is to shift Si'
by an amount 8S, which has a uniform sign. Then, to
linear order in BS, the alternating term produces a shift
in the energy of

I

+ xi [5S2i(Sfi+1 S2i —1) 5S2i+ i(Sli+2 Sfl) ] ~

Since the quantities (Sf,+i —Sfi i ) and —(Sf,+2 —S/i) have the same sign ( + for soliton or antisoliton) each
term in SEhas the same sign and so there is no possibility of a cancellation. Thus, remarkably, there is a favored
sense of precession for a soliton determined by the sign of n Of co.urse an antisoliton prefers to precess in the op-
posite sense; the symmetry between soliton and antisoliton of opposite precession frequency is preserved (it is a
consequence of T). We now turn to a quantitative analysis of this effect in the large-s (semiclassical) limit.

At large s we expect quantum fluctuations around the Neel ground states to be suppressed. Therefore we de-
fine7 9 slowly varying fields

$2i+i/2 (S2i+i S2i)/2s, 12i+i/2= (S2,+i +S2, )/2b,

(where b, is the lattice spacing). In the large-s continu-
um limit (formally 5 0) these obey the commuta-
tion relations and constraints of the fields and rotation
generators of the Q(3) a model:

f 2

H = —'c g1+ $' +g2 'jr

m
(4 ')', (4)

we obtain the large-s continuum Hamiltonian density:

[I'(x),@/(y) ] = i~""g"(x)5 (x —y),
where the coupling constant g is given by g '= (s/
2) [1—n2]'/', the speed of "light" is c = 2b, s l(1

[I'(x), l&(y) ] = tet/"I"(x)5(x —y), —a )'/2, the symmetry-breaking mass is given by m2

(a + b)/252, and the topological angle is 8 = 2n s(1
[~'(x), y~(y)]=O, ~'=1, 1 y=O. +e). The theory is invariant under Lorentz trans-

formations with speed of light c. Thus c represents the
Solving for the spin variables S, in terms of Q and l„maximum velocity of any excitation. We will generally
substituting into the Hamiltonian, and expanding in set it equal to 1 in what follows. The Lagrangean den-
the number of derivatives of the slowly varying fields, sity arising from Eq. (4) by a canonical transformatiorr'~

is

(3)

L = ( 1/2g ) [8'qb 9 qb + m2(@')2] + (8/4n )P (P'$ x 8"qb )&„„.

In imaginary time the last term in L is multiplied by i since it contains one time derivative. Thus it is a purely im-

aginary term in the action. This term is t8n„, where n„ is the winding number of the sphere on which the field $
is defined onto the two-dimensional position space (which is also equivalent to a sphere if we impose a fixed boun-
dary condition at infinity). Thus n„ is always an integer, the vortex number, and therefore the physics is periodic

FKJ. j. . A dyon occupying three sites. In the semiclassical limit, the dyon is spread over a very large number of sites.
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in 8, the topological angle. Furthermore, this topolog-
ical term is a total derivative and so has no effect in
perturbation theory in g(1/s). Thus the dependence
on 8 is exponentially small in 1/s and periodic. A
physical interpretation of this periodic 0; dependence is
given elsewhere. 'o The two classical ground states of
the Hamiltonian of Eq. (4), @'= +1, correspond to
the two Neel ground states of the spin chain. The T
symmetry of the spin chain becomes the symmetry

—$, t- —t (time reversal) of the o model and
the P symmetry becomes qb

—$. (P is not spatial
parity but a type of internal parity or charge conjuga-
tion. ) P is explicitly broken by the topological term
except at & =0 or n where exp( i& n„) is invariant
under n„—n„. T and P are spontaneously broken
to TP in the Neel ground state (the latter only when it

is a good symmetry, of course). The perturbative ex-

citations predicted by this Hamiltonian can be read off
by writing

and expanding in $"and Q». This gives the Lagrange-
an for two free fields of mass m with interactions
O(g). Linear combinations of these fields have z spin
I'= +1. These excitations are normally referred to
as spin waves. Naively, they become massless in the
isotropic limit: a, b, m 0. In order to discuss expli-
citly the soliton solution it is convenient to adopt
spherical coordinates: qb = (sinp cosP, sinp sinP, cosp).
The time-independent soliton has P =const and p(x)
varying from 0 to n Th.e dyon solution has P=oit.
Thus P plays the role of the rigid-rotator collective
coordinate introduced earlier. In terms of p and P the
Lagrangean density becomes

L = (1/2g) [(ai'pa„p+sin2p ai'p a++ m2cos2p]+ (8/4n )e""a„(cospa„p).

Setting P = const, we obtain the sine-Gordon Lagrangean with soliton solution: cosp = tanhmx Its energy relative
to the ground state is

E= (1/2g) „dx[(ap/ax)2+ m2sin2p] =2m/g. (7)

To find the low-frequency dyon solutions we may set p(x) equal to its value for the static soliton solution, substi-

tute into L, and integrate over x, giving L = (1/gm) (P) —(8/2~)P. We may take over the analysis of the rigid
rotator given above with moment of inertia 1=2/gm We conclude that the allowed dyon frequencies are
Qi=(gm/2)(n+8/2n) and the rotator energies are E=(gm/4)(n+8/2m) . This analysis is only valid for
gn && 1 (i.e., n && s); there are terms in L (P) of higher order in P arising from both classical and quantum
corrections. In terms of the original parameters, the dyon energy and precession frequency to lowest order in 1/s
are

E„=J[2(a+ b)]' (s (1 —a )+8[n+s(1+ex)]2]

and cu„= J[2(a+ b)]'t2[n+s(1+a)]. The integer n

in these formulas is the total z component of spin of an

even number of sites containing the dyon. To see this

note, if we sum over an even number of sites, that

2k+1
S -=X S;=„d t'

~
d aL/a/3=n. (9)

2j

If we consider a chain with an odd number of sites it

necessarily contains a dyon. The total z spin is now

S '= n + s, the second term coming from the unpaired

spin which we take to be far from the center of the
dyon. Specializing to the case 0. =0, we see that the
lowest-energy dyon state is a singlet with S'=0 for s
integer but is a doublet with S'= + —,

' for s half-

integer. In either case all levels with n&0 are doubly
degenerate. As n is turned on these levels split with

crossings occurrirtg each time that so. passes through a
half-integer or integer. Thus 8 has an effect O(1) on
the dyon, although its effects are generally O(e ').
This is so because the topological term is (1/4n)P
x I dx d(cosp)/dx. The integral is the soliton number
and P is the z spin, both of which are nonzero for a

10SO

i
dyon. They are analogous, respectively, to the mag-
netic and electric charge of the particle-physics dyon.
It should be emphasized that although the above quan-
titative analysis is only valid in a very restricted range
of parameters, the general phenomenon of splitting of
dyon levels by a P-nonconserving interaction is much
more general since it follows from symmetry con-
siderations alone.

We now consider the prospects for experimental ob-
servation of this phenomenon. Crystals that approxi-
mate one-dimensional antiferromagnets well are
known. An example with Ising anisotropy and s = —, is

CsCoC13. A broad peak in the frequency-dependent
susceptibility, indicative of solitons, " has been ob-
served' in neutron scattering. Precessing solitons,
dyons, have not yet, to my knowledge, been observed.
For the above picture to be appropriate the spin would
have to be reasonably large and the anisotropy quite
small [the s = —', one-dimensional antiferromagnet
(CH3)4NMnC13 shows behavior typical of the large-s
limit and has a small anisotropy of about 1%; however,
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the anisotropy is planar rather than Ising]. On the as-
sumption that such a material could be found, a possi-
ble method for detecting the dyon levels would be to
excite transitions between them by neutron scattering.
Supposing, for the moment, that n = 0, it might be
possible to excite transitions between dyon states of
different S' by a neutron scattering event in which the
neutron spin flips and S' changes by one unit. For
half-integer s such a transition could occur between
the degenerate soliton ground states; in the integer-s
case some of the kinetic energy, BE= SJ[2(a+ b)]t~2

in the above approximation, would be turned into
internal dyon energy, associated with the precession.
If a =0, the same energy shift would be observed for
5$'= +1 and for soliton or antisoliton. This should
be the lowest energy and most probable process which
changes S ' by +1. The massive spin waves discussed
above have spin + 1 and so their spin cannot change
by one unit.

There is no indication of alternating interactions in
CsCoC13 or (CH3)4NMnC13. However, such interac-
tions, arising from the spin-Peierls effect, have been
seens in the quasi one-dimensional s=-,' antiferro-
magnets TTFXS4C4(CF3)q, where X=Cu or Au and
TTF denotes tetrathiafulvalinium. The parameter n
was observed to be 0.127 and 0.033, respectively. It is
not clear that Ising anisotropy is compatible with the
spin-Peierls effect which is a lattice instability induced
by the massless antiferromagnetic phase. However,
if a system could be found with these two types of
asymmetry (the alternating interactions could arise
from effects unconnected with magnetism) then it
might be possible to observe the fractional shift in
dyon levels from neutron scattering. For integer s,
two different inelastic energy shifts would now be ob-
served for AS'= +1 corresponding to scattering off a
soliton or antisoliton. The difference between these

energies is, in the above approximation, b, E=32J
x [2(a+ b)]t~2so. A similar result holds for half-
integer spin. It might also be possible to observe tran-
sitions between dyon levels by resonant adsorption of
(microwave) photons. A useful way of disentangling
the dyon levels might be the application of a magnetic
field, lt, in the z direction. This shifts the energy of a
dyon of angular momentum S' by 2@ ahS' (where pa
is the Bohr magneton), thus splitting the levels which
are degenerate if u =0.
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