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Multicriticality in Hexatic Liquid Crystals
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A theory is presented f'or the successive sixfold Fourier components, C6„, in the bond-
orientational order in the neighborhood of a smectic-A-hexatic-8 phase transition. Near the tran-

sition we predict that C6„—C6 with o.„=n+x„n(n —l) where x„depends weakly on n G.eneral
arguments are presented for the topology of the phase diagram in the vicinity of the smectic
"liquid-hexatic-crystal" triple point which lead to the existence of a tricritical point on the smectic-
A -hexatic-8 line.

PACS numbers: 64.'70.Md, 61.30.6d, 64.60.My

In recent years it has been realized that there are
bulk phases of matter with bond-orientational long-
range order as in a solid but positional short-range or-
der as in a fluid. Examples include the hexatic-B
phase of liquid crystals and icosahedral metallic
glasses. ' In the liquid-crystal hexatic phases there is
long-range sixfold-symmetric orientational alignment
of the lines connecting neighboring molecules in the
smectic planes. This order is characterized by a local
order parameter Q(r) =e6ta('}, where (I is the angle
between the "bonds" and some reference axis. 2 In-
plane positional order, characterized by the density
Fourier components pq, is achieved at a lower tem-
perature. Recent research has concentrated on two
main phase sequences. In some materials, such as n
hexyl-4'- n-pentyloxybiphenyl-4-carboxylate (65OBC)
and mixtures containing it, one observes the se-
quence smectic A hexatic B crystal E (Sq—StrH SE). The temperature range of the hexatic
phase is usually narrow. In other liquid crystals, such
as 40.8, a direct transition from Sz to a crystal, Stre, is
observed. 4 Mixtures of the two types of materials ex-
hibit a triple point, at which the Sq, StrH, and Sgc
phases coexist. s In many of these systems, the transi-
tion from Sz to SttH is continuous, but has a tricritical
specific-heat exponent, a = 0.5.6 In others, the transi-
tion appears to be weakly first order. For cases in
which the crystal phase also has long-range herring-
bone order such as SE, the existence of such a tricriti-
cal point has been attributed to the coupling of the
bond-orientational order with herringbone order. 7 An
alternative phase sequence involves smectic C tilted
hexatic I- crystal 1 (S&- St SJ), as in racemic 4-
(2-methylbutyl) phenyl 4'-(octyloxy)-(1, 1') -biphenyl-
4-carboxylate (SOSI).s In this case the coupling to
molecular tilt induces long-range hexatic order even in
the Sc. phase. This coupling allows the growth of
single-domain samples, which in turn has recently
made possible a direct measurement of many of the
6n-fold order parameterss C6„=Re(i'") = Re(e6t"a).

In the present Letter we discuss in detail the

theoretical origins of the power laws C6„—C6" ob-
served in the synchrotron x-ray studies of the Sc St

transition in SOSI. We note that the exponents o.„are
related to a sequence of crossover exponents, 9 associ-
ated with symmetry-breaking terms which describe
multicritical crossover from the XY-model critical
behavior into that of uniaxial (n =20), ' three-state
Potts model ( n = 3)," cubic ( n =4), hexagonal
( n = 6), '2 etc. , symmetry. Although the crossover ex-
ponents for n = 2 and n = 3 were measured separately
before, '0 " the; present method allows a simultaneous
measurement of many of these exponents, including
those with n ~ 4 which usually only represent correc-
tions to scaling, and which are accordingly very diffi-
cult to measure. The sequence a.„represents an infin-
ite set of independent critical exponents, all of which
characterize the critical behavior. As we discuss
below, a detailed analysis of the n dependence of tr„ is
quite illuminating. Since averages like (Q") always ap-
pear as Fourier coefficients in phase transitions charac-
terized by a complex order parameter, 9 similar
phenomena should occur near a variety of incommen-
surate phase transitions, 9 and in other systems such as
certain graphite intercalates. '3

As we show below, the data on SOSI are fully con-
sistent with the theoretical predictions on C6„. In ad-
dition, we find some indications that the transition
may be nearly tricritical, similar to those in many
S„S+H systems. Since the coupling to the herring-
bone order is unimportant in 8OSI, we present an al-
ternative thermodynamic argument, which suggests
that the Sz StiH Site phase diagram should always
have the structure shown in Fig. 1, with a tricritical
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FIG. 1. Generic temperature-concentration phase dia-

gram near the S&-S~H-Sa~ coexistence triple point. The bro-
ken (full) lines indicate second- (first-) order transitions.
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point and a triple point. The same structure should apply to the S& S& SJ sequence although the second-order
Sc' Sq transition will be rounded by the small hexatic field created by the molecular tilt. We hope that the
present paper will stimulate much more detailed experiments in the vicinity of the triple point as well as detailed
measurements of the successive Fourier components in other systems mentioned above.

Our theoretical analysis of the Sq-Ss~ and Sc-S~ transitions starts ™heGinzburg-Landau Hamiltonian,
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Here the ordering field h is determined2 by the average
tilt order parameter, @ (h —Q6); it is zero for S„
phases while the exp™~~~1~~suits indicate that h is
quite small in Sc phases. For h=0, this model ex-
hibits XY-model critical behavior, provided that u4 is
larger than a tricritical value, u4, . At u4= u«, Eq. (1)
has a tricritical point, characterized for d~3 dimen-
sions by the Gaussian fixed point, with mean-field ex-
ponents and logarithmic corrections.

To study C6„=Re(f"), we add to Eq. (1) a field
term H„=g„f d~«Re(P"). The essential observation
is that if one writes Q =x+ iy, one sees that successive
terms n-2, 3, 4, etc. , scale like the uniaxial (x —y2),
Potts (x' —3xy'), cubic 4(x'+y') —3(P~', etc. , ani-
sotropies. 9 " Asymptotically close to the XY-model
fixed point, the free energy should scale as

F(~g, ) = lrl2 f(g„/Irl "), where r = (T—T )/T a
is the XY specific-heat exponent, and $„ the appropri-
ate crossover exponent. 9'0 Thus,

C6„= (BF/(lg„)g o- ~r ~' " —
Cy ", (2)

with

where )).„=$„/i'. This behavior holds only asymptoti-
cally close to the XYtransition. As we show below, in
that limit o.„=n+x„n(n —1) with x„weakly depen-
dent on n

Generally, one is not asymptotically close to the XY
transition so that C6 may not be small and there is typ-
ically a nearby tricritical point. In mean-field theory
o'„= n, so that at a tricritical point one should have
simply C6„—C6 plus logarithmic corrections. There-
fore, it is necessary to consider carefully the crossover
from Gaussian to XY behavior. To leading order in
u4= (u4 —u«), the renormalization-group recursion
relation for g„ is dg„/dl =y„g„4K'u—4n ( n —I)g„,
where yo = d —n (d —2+ 7) )/2. The factor n ( n —1)
comes from the combinatorics of picking two out of
the «) factors in f", and appears in all higher-order
terms as well. '0'4 Using the solutions'5 u4( l )

u e'i/0(l) r(l) re2i/g(l)gs we find that

g„(I) = g„exp(ygl)/0 ( I )"("

2 ~ &n-
g

2 —A

2(d-~„)
d —2+q '

with 0(l) =1+ (uJuq )(e"—1), 4K&u4 =~/10, and
e =4 —d. Substituting in F(t g„)= e ~'F(t(l), g„(&)),
we find that

C „(rh) =exp[ —(d —y„)I]g(l) "'" "~'oC6„(t(l),exp(yol)h).

We now iterate our recursion relations until C6(t(P), exp(yi I')h) =1. Since at that point C6„will also be of or-
der unity, we conclude that

—C~ [1+(ii4/&') (C —2cj(d —2+')) 1) j
—«(N —1)/10 (4)

Note that the dependence on r and ji has dropped out.
Equation (4) is correct for all dimensionalities d ~ 3 near the tricritical point where u4 is small. It should also

work well whenever C6 is not too small, so that l' is not too large. When the ratio p= C62/(u4/u4 ) is much less

than 1, one is in the asymptotic XY regime and (4) reduces to (2) with C6„=C6 ", with o-„=n

+ x„n ( n —1)/(d —2+ q ) and x„=~/5+ 0 (~2). When p is not small, the C6 2 term must remain inside the
brackets of (4), and can represent an important correction because of the «i (n —1) exponent. In the SQSI experi-
ments, the C6„are most easily measured when C6 is large, so that p may not be small. Even under these cir-
cumstances, both (2) and (4) predict that the correction to the mean-field result C6„—Cf scales like a
temperature-dependent constant raised to the power n (n —1). In fact, if we take x„=)).( T) to be independent of
n, the two forms are identical with (u4/u4 ) = (C6 '0"(r) —1)/(C6 ' —1) in d = 3.

We next consider the asymptotic XYregime p &( l. Using the ~-expansion results'4 to order e3, one has

x„=—,
' e(1+ —,

' e(3 —n) + —,', e2(n2+ 3.366455n —22.322657) }.
Clearly, extrapolation to ~ = 1 is not trivial. Simple substitution of ~ = 1 in this equation shows that x„ increases
from —0.15 to —0.4 for n = 2 to 7. An alternative estimate of x„may be obtained by use of the values of u4 and
the diagrammatic integrals in d=3 directly rather than in d=4 —~. Taking the numbers of Jug'6 to order (u4 )2
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we find x„=0.3 —0.008n or x„=0.3/(1+0.027n).
This form yields a much weaker dependence on n,
with x„varying from 0.3 to 0.25 for n=2 to 7. To
summarize, at d = 3 Eq. (4) holds for
C6 & ( u4/u4 )' 2; for smaller C6 it simplifies to

C6„—C6 "with a'„= n+x„n(n —I)/(d —2+q).
Given the above theoretical predictions, we have

reanalyzed the data on 8OSI.8 We first fitted the mea-
sured angular structure factor at each temperature by
the form

1=10 —+ X C6„cos[6n(90—)() j +1~6,
rt=t

(5)

with C6„=C6". The resulting average effective ex-
ponents o „, already reported in Ref. 8, are shown in

Fig. 2. As emphasized in Ref. 8, Eq. (5) is chosen
such that as Q 1 each C6„1so that the C6„are
properly normalized. Thus it is plausible that the pro-
portionality sign in Eq. (2) would become an equality
and this has been assumed in the analysis. As seen in
the figure, the results fit well with o-„= n

+0.295n(n —1) consistent with the theory. From
Eq. (3), with the XY values t =0.67, q —0.03, our
results give $2=1.16+0.07 and $3=0.4+0.17, con-
sistent with earlier measurements. ' " Our results
also yield P6= (d —X6)v=5.1+0.4, which is higher
than the e-expansion estimate 3.59 in Ref. 2.

We next fitted Eq. (5) to the data of Ref. 8 assum-
ing C6„=C6( T)"+"(T " " ' and the resulting
C6( T) and )t, ( T) are shown in Fig. 3. For
T(77.6'C, that is C6) 0.47, X(T) is practically a
constant, ) (T) =0.295+0.02. This may be com-
pared with the theoretical XY value x„=0.3 —0.008n.
Fixing A, (T) at 0.295 for all Tindeed gives comparable
fits, with the goodness-of-fit parameter X2 typically
between 1 and 2. Identical fits are obtained with Eq.

(4) with u4/u4 = 1.7 so that p —0.4. In the transition
region )t. ( T) appears to decrease towards zero suggest-
ing a crossover to mean-field (tricritical?) behavior;
however, much more precise data are required to es-
tablish this definitively.

Finally, in Ref. 8 fits were performed with no re-
strictions whatsoever on the C6„. If we write

C6„=a„C6 " and fit all of the data for T ( 76.8 'C for
each C6„we find excellent fits with a„varying from
0.99 to 0.73 as n varies from 2 to 6 and the exponents
follow the law a.„=n+0.22n(n —1). These results
are consistent with the constrained fits at individual
temperatures discussed above.

As noted above, the essential feature of both Eqs.
(2) and (4) is that the correction to the mean-field
result C6„—Cf scales like some temperature-
dependent constant raised to the power n(n —1).
Since Eq. (4) applied away from the critical point,
choosing the amplitude factor to be 1 is correct to lead-

ing order; however, writing C6„=C6 in the critical
regime is a much stronger assumption. The 8OSI data,
nevertheless, seem to support this assumption;
presumably the fact that Eqs. (2) and (4) must con-
nect continuously means that the proportionality factor
in Eq. (2) cannot deviate significantly from 1. The ac-
tual value for )t(T) agrees remarkably well with the
theoretical estimate, x„=0.3 —0.008n for the asymp-
totic XY regime in spite of the fact that C6 is as large
as 0.9. Much better data than those currently avail-
able, especially in the regime where C6 is small, will be
required to differentiate between Eqs. (2) and (4) and
to determine whether or not the crossover to mean-
field behavior [) (T) 0] near T, suggested by Fig. 3
is real.

The beauty of the above analysis is that the finite or-
dering field h in the tilted hexatic has not hidden in-
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FIG. 2. Measured exponents o-„ from Ref. 8. The line is
a „=n+0.29Sn(n —I).
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teresting behavior but rather has made possible a
direct measurement of Cs„. The situation is more dif-
ficult if we wish to identify other critical exponents,
such as P or 5. We fitted C6 to a parametric equation
of state '7 h =8 (I —82) rt'+v, C6= Evil', t = (I
—b282) r, in which P, y, T„K, and h were parameters.
Data from 73 to 81 'C could be fitted, but gave a small
value of P suggesting the possibility of a weakly first-
order transition. When only Cs (0.8 were fitted, we
obtained y = 1 and P =0.25. Fits of the same range
of data to Eq. (1) without the gradient term gave small
negative values of u4. These results are also sugges-
tive of a tricritical point, as found in Refs. 3-6. The
sharp changes in the order parameter C6 near 77 'C are
remininscent of the behavior near a wing tricritical line
close to a tricritical point. '

We now present arguments explaining why such a
tricritical point must occur, due to the nearby coex-
istence point of S„, Stttt, and Szc or, ignoring the
rounding effect of the induced h, Sc, St, and SJ. The
transition S„S&cor Sc SJ is always first order,
due to the cubic term in the crystalline order parame-
ter, '

pz, pz, pz, with ki +k2+ k3 =0. The same cubic

term survives in the Stttt (St) phase, and turns the

Sett Site (St SJ) transition first order as indeed
observed in 8OSI. These two first-order lines meet at
the triple point with different slopes (see Fig. 1), since
the coupling between Q and p (or order )Q~p2) shifts
the transition Sett Stic (Si SJ) relative to the
continuation of the Sq Site (Sc SJ) line. This
discontinuity in slope at the triple point now implies a
discontinuity across the Sq Sz& (Sc St) line in
that vicinity, turning it first order. As one moves
away from the triple point the effects of p on fluctua-
tions in Q decrease, and the effective coefficient u&,

obtained after elimination of p from the partition func-
tion, may change sign. '

Since the St SJ transition in 8OSI occurs only
about 4'C in temperature below the rounded Sc St
transition, we expect a triple point to exist nearby in
some extended parameter space such as concentration
or pressure. Further experiments are needed to con-
firm Fig. 1 for 8OSI and for the many cases discussed
in Refs. 3-6.
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