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Multiple-Scattering Noise in One Dimension: Universality through
Localization-Length Scaling
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%e present a study of nonstationary multiple-scattering noise resulting from pulse reflection
from a one-dimensional randomly layered half-space. It is shown that the noise power spectrum
exhibits model-independent universal behavior when it is analyzed in terms of a single dimension-
less variable x, defined as the ratio between the mean distance traveled by the pulse and the
frequency-dependent localization length. Results of numerical simulation indicate that the spec-
trum is a peaked function of x, where the height of the peak defines the expected value of a noise
upper bound.
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The use of a transient pulse as a material or target
probe is a technique that has both industrial and geo-
physical applications. When the probed or the inter-
vening medium contains randomness, the time-
dependent reflection and transmission signals are gen-
erally characterized by the presence of noise arising
from multiple scattering of the pulse. A good example
of this can be found in the complex signal tail, known

as coda, ' following the arrival of each seismic pulse
after it has traversed the inhomogeneous earth. While
the structure of this tail follows deterministically from
the structure and properties of the earth, the possibili-

ty of recovering this type of information from the coda
is nevertheless rather remote since the information is

thoroughly scrambled by multiple scattering. The
question is then what information, if any, can be ex-
tracted from this type of noise'? In this work we study
the reflection noise resulting from an acoustic or elec-
tromagnetic pulse propagation and scattering through a
one-dimensional randomly layered medium. It is
shown that the nonstationarity of the noise has a con-
tinuous range of time scales defined by the
frequency-dependent localization length2 i(cu) divid-

ed by the mean velocity ~p. When the observation
time r is scaled in terms of /(cu)/vp, the noise-power
spectrum is demonstrated to be a universal function of
the scaled variable x —= rv p/l(co) independent of model
parameters. For low frequencies, this universal char-
acter of the spectral function is in fact supported by

the earlier mathematical work of Burridge, Papan-
icolaou, and White. The identification of localization
length /(cu) as the scaling quantity generalizes the
theory and extends the domain of universality to all

frequencies. Through numerical simulations we have
also determined the characteristics of the universal
spectrum function in both the time and the frequency
domains. In our present case the answer to the ques-
tions posed earlier is therefore that, with the
knowledge of the universal spectrum function, the

pI =
pp [I + ~~&&1,

K~
' = Kp t [ I + cr x N ],

(1a)

where i (or j) denotes ith (or jth) piecewise layer,
0~a.~tlr~ & 1 specifies the amount of randomness,
and N, is a random number with a uniform distribu-
tion in the interval [—1,1]. The thickness of the layers
can be either constant, denoted as model I, or variable
with an exponential distribution, denoted as model II.
In the region —~ & z & 0 we will assume the medium
to be homogeneous with p = pp, K = Kp, and mean
velocity ~p= (Kp/pp)'i2. The initial condition of the
problem is that beginning at ~=0, 8 a pulse moving
from left to right with velocity up is incident on the
random medium. For an observer sitting at z= 0, the
response of the medium at time ~ is given by

Q(7 ) = (I/2m) „des exp( io)r) f(o))R (co), (2)

where Q can be either the pressure or the displacement
velocity, f(co) denotes the amplitude of the pulse fre-
quency component, and R (co) is the reflection coeffi-
cient for a single-frequency wave. The time correla-

maximum information that one can directly extract
from the noise would be the localization length as a

function of frequency. In addition, the knowledge
about the character of the noise also opens the possi-
bility for enhancing signals, i.e., scatterings from target
objects, through noise suppression.

Consider a one-dimensional randomly layered half-

space in the region 0 ~ z & ~ characterized by spatial-

ly varying density p(z), elastic modulus K(z), dielec-
tric constant e(z), and magnetic permeability p, (z).
Since the acoustic and the electromagnetic problems
are related by a mapping of the variables, 7 the results
obtained in one case are assured to be applicable in the
other case as well. In the following we will consider
the acoustic problem. The density and elastic-modulus
variations are modeled by piecewise-constant profiles
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tion function of the reflected signal can now be written as

goo pao

(Q(r) g(r+ t)) = d~zf(mi)f (co2)exp( —i~2t) (R (~i)R"(~2))exp[i(~i —~2)7](2~)2---
|oao ~oo h h

dcoexp[ —i(ut] dh f o) ——f" co+ —exp( —ibad') U(h, o)),
2m' " -~ 2 2

(3)

where the angular brackets denote configurational
averaging, co=(cui+cuz)/2 is the center frequency,
h =OJ2 Cdi, 1 = T+ (t/2), and

we can write the spectrum as6

~(r, ~) = If(~) I'U(r, ~), (5)

U ( h, o) ) = (R (cu —h/2) R'(ru + h/2) ) . (4) where

It is easily seen from Eq. (3) that the quantity in the
square brackets is exactly the power spectrum of the
reflected signal S(7,m). If U(h, cu) = c5(h), then
this spectrum is given by cIf(~) I, i.e. , the noise is
white and stationary. However, in reality we expect
U( h, co) to have a small but finite width 3 h &( co with
U( h =0, cu) = 1 (localization of waves implies
IR I=1), and U( —h, co)= U"(h, co). Since h is the
conjugate variable to r, Ah in essence determines the
time scale of nonstationary for the reflected noise.
Given that U(h, ro) is nonzero only for IhI/co(& 1,

U(r, cu) = (1/2m) dh exp( —ih7 ) U(h, cu) (6)

is the noise spectrum function.
To calculate the function U(h, co), we use the

transfer-matrix method2 to evaluate R(co+h/2) at
different center frequencies cu and different values of
h. For the one-dimensional acoustic problem,
R (v) = —q'(v)/p" (v), where pand q are given by

l, j —1~
1

1 with T, + i, denoting a 2&& 2 matrix with elements

tii = t2'z =0.5[1+(pf+iKI+i/p, K, )'~ ]exp[iv(@,+i+@,)],
tiz = t2'i = 0.5 [1—(pg+ i K, + i/p, K, ) ' ']exp [iv (0,+ i

—0,) ],

and @&=ai(p&/K, )'iz/2. The value of N is chosen to
be large enough so that IR I

= 1 and the phase angle of
R stabilizes. In Fig. 1 we show the real and imaginary
parts of U, averaged over 400 configurations, for two
models, in which model I has fixed layer thickness
ai = 1, pp= 8, Ko= 2, o'& =0.05, crt' = Q.4, and model
II has the parameter values po= Ko= 1, o~ = o.x =0.9,
and the probability distribution of layer thicknesses
P(aI) =exp( —ai). The data for a total of fifteen
center frequencies for model I and eleven center fre-
quencies for model II are shown. In addition, the solid
lines denote the Fourier transforms of the time-
domain simulation data to be explained later. For each
center frequency co, the values of U are plotted as a
function of lny, where y~ h is a dimensionless variable
obtained by scaling of h in terms of ~o divided by a
scaling length l(cu), i.e., y = h/(~)/uo. It is seen, first
of all, that U indeed possesses a finite width as expect-
ed. Moreover, by adjustment of the value of /(cu) for
each center frequency cv all the data points in terms of
y fall within a band whose width is defined by statisti-
cal fluctuations. This fact gives strong indication that
U is a function of a single variable y. Furthermore, U
is model independent since completely different ran-
dom models yield the same functional form (this fact

has been verified for more than the two types of
models described above). These items of evidence,
coupled with a mathematical proof of the single-
variable and model-independent properties of U in the
low-frequency limit6 [(mean layer thickness)
xylo/vo 0], lead us to believe that U is indeed a
universal function. 9

In Fig. 2 we show the values of l(u&) used to obtain
the scaling variable y in Fig. 1. On the same graph we

also plot the localization length, 4 calculated indepen-
dently as ( —in[1 —IR(z)Iz/2z) ' in the limit of
large z, for the same two models. The remarkable
tracking of the two curves, especially in the region of
undulating variations'o for model I, leaves no doubt
that i(co) is in fact the localization length. It should be
noted that the range of frequency covered is large,
ranging from A. =2nvo/ru=20a to X=Q Sa, where a is.
the mean layer thickness. This fact tells us that the
scaling relation is valid in practically all frequency
ranges provided that one uses the localization length as the

scaling quantity Also, since th. e width of the function
U(y) is b,y = Ahl(ru)/uo ——1, the time scale of noise
nonstationarity can be deduced to be (b, h )
= l(co)jvo. Besides verifying the earlier assumption of
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FIG. 1. (a) The real part and (b) imaginary part of the
function U(y) as functions of lny, where y= hl(Ql)/vo.
Crosses denote the results of model I; open circles those of
model II.
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4h/~ =uo/jul(&u) (( 1, from the behavior of l(0i) as
a decreasing function of frequency (seen in Fig. 2) we
predict that the low-frequency components of the
noise will persist longer, and the noise frequency con-
tent should therefore continuously shift downward at
long observation times.

The scaling property of U directly implies that the
noise spectrum function U(~, cu), Eq. (6), should be
expressible as

U(7, cu) = p, (x)/7,

where x = 7 vo/l(cu) and"
t +OO

( )
(x/2m) J U(y)exp(ixy)dy, x~0,

,0, x (0. (8b)

Since U has the dimension of [time] ', p, (x) is noted
to be dimensionless. Moreover, by using the inverse
Fourier transform of p, (x) to U(y) and the fact that
U(0) = 1, we derive a sum rule for p, (x):

x 'p, (x)dx=1. (9)

FIG. 2. The scaling length i(oi) and the localization

length as functions of wavelength k = 2~~0/~, both in units

of mean layer thickness a. Results for model I are shown in

the upper pair of curves, and those for model II are shown

in the lo~er pair. The agreement between the two quantities
indicates that l(ru) can be identified as the localization

length. Note the asymptotic ~ ' dependence at low fre-
quencies.

To obtain the function p, (x), we have carried out
simulations in the time domain by solving the acoustic
wave equation,

[~(.) ]-'Q = a [ [p(z) ]-' a Q/a. ]/az,

numerically for 900 configurations of model I with a
Gaussian incident pulse. By Fourier transformation of
(Q(~) Q(t+ t) ) with respect to t, we obtain S(7, cu)

for five different observation times v. The values of
p, (x) shown in Fig. 3 are evaluated as S(~,oi)r/

I f(cu) )2 and plotted as a function of Jx by use of in-

dependently calculated values of the localization
length. We use jx as the plotting variable because at
low frequencies vx~oi, which makes the plotted
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0.3

generic multiple-scattering effect, and a model-
dependent part, expressed by the localization length. '3

Application of the theory, plus the effect of higher
spatial dimension, are presently under consideration.
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FIG. 3. The noise spectrum function p, (x) as a function
of Wx, where x= ~uo/l(a&). In time units of (mean layer
thickness)/uo, noise data for 7 200, 300, 400, 500, and 600
are shown.

curve proportional to the noise-frequency spectrum in
that limit.

Several features and implications of Fig. 3 should be
noted. First of all, the predicted scaling property of
p, (x) is verified in that the data for different 7's col-
lapse inta a single curve after the localization-length
scaling. Second, p, (x) has a peak at x = 1, where the
height of the peak, p, ( = 0.3) defines p, "/r as the ex-
pected value of an upper baund for the noise power.
A physical interpretation of the peak is that it separates
the effective-medium regime'2 far x & 1, where the
wave does not yet see the localization character of the
medium, from the wave-scattering regime for x~ 1,
where the characteristic behavior is dominated by ex-
ponential decay of the wave amplitudes. Third, since
l(cu) has a lower bound" L far a given randomness
model, a minimum pulse traveling time 7 = L/uo is re-
quired before the condition of maximum noise, x = 1,
can be reached. Last, by drawing a line through the
data points and then fitting an exponential tail to the
curve, we verify that the sum rule, Eq. (9), can be sat-
isfied by only slightly adjustment of the rate of the tail
decay. The Fourier transform of x 'p, (x) then yields
the solid lines shown in Fig. 1. The excellent overall
accord with the frequency-domain data clearly offers a
verification for the internal consistency of the theory.

In conclusion, we have presented a framework for
the analysis of multiple-scattering noise that consists
of a universal part, which is a manifestation of the
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7e/c- p, c/p, K, electric field- displacement velocity,

magnetic field pressure. Here c denotes the speed of
light.

87 = 0 is defined by the instant at which a delta-function
pulse hits z =0. The response to any other pulse shape can
be expressed as a convolution of the pulse with the response
to a delta function.

~The fact that after the localization-length scaling the
functional form of U(y) for high frequencies agrees with
that for low properties, ~here we have mathematical proof
of the claimed properties, shows that the model-independent
character of U(y) extends beyond the low-frequency limit.

~OThe undulations in the localization length as a function
of wavelength (frequency) are typical for equal-layer-
thickness models. They may be interpreted as remnants of a
periodic system.

tip, (x) = 0 for x & 0 is a statement of causality.
'zAt x « 1 it can be shown that p, (x) =2x. Therefore,

at early observation times (~ small) the noise spectrum has
the form U=2 /vx=2 /ula(cu), i.e., the noise would seem
to be stationary but nonwhite, with the noise-frequency
dependence governed by the frequency dependence of (lo-
calization length)

&3The localization length expresses the wave attenuation
length due to multiple scattering. %hen there are other dis-
sipation mechanisms present, their effects can be estimated
by comparison of the dissipation attenuation length /d with
localization length /. If /d && /, then dissipation can be
neglected. If not, the net wave attenuation length L is ob-
tainable as L ' =

/q '+ / '. The effect of dissipation on our
universal function remains to be studied.


