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Numerical calculations for a model anharmonic system interacting with a laser are used to
analyze the quantum mechanical implications of classical structure in stochastic regions due to can-
tori [associated with the breakup of invariant Kolmogorov-Arnol'd-Moser surfaces). The numeri-
cal results show that a quantum wave packet may remain localized, even though classical orbits are
strongly chaotic. Consequently, the quantum dynamics continues to exhibit "tunnelinglike"
behavior even when diffusion is not classically forbidden.

PACS numbers: 03.20.+i, 03.65.—w

Over the past several years, theoretical work on non-
linear systems has shown that "chaotic orbits" can ex-
hibit nonrandom behavior, even in strongly stochastic
regions. ' 'o This behavior is attributable to the rem-
nants of Kolmogorov-Arnol'd-Moser (KAM) tori, res-
onance islands, and separatrices which have broken up
under the nonlinear coupling and are no longer invari-
ant, yet they continue to influence the dynamics on an
intermediate time scale. Coupled to these observa-
tions concerning classical stochasticity, comparisons
between classical and quantum dynamics indicates that
quantum mechanics tends to suppress the appearance
of chaos. " '9 These two sets of observations have
lead to the suggestion that some large quantum effects
may be associated with the classical structure that gives
rise to the nonrandom behavior that can occur in
chaotic regions. 6 s'o

Significant progress has been recently made in the
analysis of the classical structure in chaotic regions.
The recent work by MacKay, Meiss, and Percivals (Pa-
per I) and Bensimon and Kadanoff (Paper II) on the
barriers due to cantori associated with the breakup of
invariant KAM tori having irrational frequency ratios
is of particular importance to the present study. (The
dynamical barriers associated with the breakup of reso-
nance zones and separatrices are treated in Refs. 4 and
5.) These papers present a classical theory for dif-
fusion in two-degree-of-freedom systems which (1)

suggests the location of the strongest barriers to dif-
fusion, and (2) provides a methodology for construct-
ing a phase-space representation of the barriers and
calculating the fluxes and rates for transport across
them.

In this Letter, we examine the response of quantum
dynamics to the phase-space structure associated with
cantori. Our primary purpose is to present numerical
evidence that quantum mechanics may sense this
underlying structure, and that its response is manifest-
ed in stronger localization and slower diffusion rates
than predicted by classical dynamics. Thus, for strong-
ly quantum mechanical systems these effects can be
particularly strong since the quantum uncertainty
would require a significant breakup of a KAM torus
before the corresponding flux would be on the order of
Planck's constant.

In this analysis, we will treat multiphoton dissocia-
tion in a model for vibrational anharmonic motion (a
model for the HF diatomic molecule). The results
should be qualitatively indicative, however, of the
types of effects that may occur in other dynamical
processes. In addition, we will at this time focus on
only one field frequency and intensity. How the ef-
fects reported in this paper depend on these two
parameters will be treated elsewhere. 2o

The classical Hamiltonian for a nonlinear oscillator
interacting with a monochromatic radiation field can
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be written ' ments of the optical potential

vr = (~«~ I'.p~~«)

where

(6)

where HF and HM are integrable Hamiltonians for the
radiation field and the oscillator, respectively, and H,
is the field-molecule nonlinear, dipole interaction.
These are given in atomic units (a.u. ) as

2/2 + 0 225 [ I e
—1.174(x —i.7329) ]2

HF = 1/2[PF2+ r0F2Xy 1,

Ht = —Xp.D(x),
with

D (x) = —0.4541x exp( —0.0064x2),

(2a)

(2b)

(2c)

(2d)

where p, is the reduced mass (p, =1744.59 a.u. ) and
cuF is the radiation-field frequency. The Hamiltonian

Hc thus describes a two-degree-of-freedom, nonlinear
system with conserved total energy, and is amenable to
the classical theory in I and II. This system has been
previously used in several classical studies of multi-
photon excitation.

It was found advantageous to use a time-dependent
semiclassical Hamiltonian of the form

Hg = H~ —Eocos(Q)pt)D(x)

to describe the quantum dynamics. In Eq. (3), H~
and D(x) are quantum mechanical operators for the
molecular Hamiltonian and dipole moment defined in
Eq. (2). The molecule-field interaction is then incor-
porated as a periodically time varying dipole coupling
between field-free Morse-oscillator eigenstates {X«),
The parameters Eo and 0~F represent the radiation-field
strength and frequency, respectively. The Hamiltoni-
an H~ has been shown to be equivalent to Hc in the
limit of high-intensity fields, when the nonlinear cou-
pling parameter A. is related to the field strength and
intensity I by

z = o)FED/(2E) '/' = 0)F(l/ceo) '/', (4)

where c is the speed of light, «0 is the permittivity of
free space, and E (4.13X10+~ a.u. ) is the conserved
total energy of the laser-oscillator system. For the cal-
culations reported here, 1=2.9X10+'3 W/cm2 (h./
cuF=1.00X10 s a.u. ) and 0&F is 3922 cm ' (0.00178
a.u. ), shifted slightly to the red from the HF funda-
mental of 4138 cm

Dissociation is treated by s (1) discretizing (con-
structing an infinite wall at x = x.= 16.75ao) the con-
tinuum energy levels, and (2) associating a decay
width y«with each discretized state ) &«) ~hose energy
E„ is greater than the dissociation energy Do, by defin-
ing the complex energy

V„(x)= 0.02 {1+exp[ —(x —x„)/0.35] ) '. (7)
The optical potential has been shown2s to give good
agreement with dissociation probabilities obtained by
numerical integration of the time-dependent Schro-
dinger equation over a grid in two variables, x and t

There are two advantages in formulating the quan-
tum system as described above. First, because the
nonlinear interaction is periodic in time, Floquet
theory26 can be used to provide a straightforward, non-
perturbative method for following the time evolution
of the molecular wave function, 'P; (x, t) with
O, (x,t=0) =X,(x). Second, since 0'; depends only
on the diatomic internuclear distance and time, the
Wigner transform, 2~ 29

I"' (x p, t) = (I/m /t )„e"&'/"(x —s/21+, ) (8)

x (+;Ix+ s/2) ds,

can be unambiguously displayed on the x-p surface of
section. Thus, Hc will first be used in describing the
phase space and locating the strongest barriers to clas-
sical dissociation. Then, with use of Hg, the time
development of the Wigner transform of a nonstation-
ary state can be viewed relative to the topology of the
classical barriers.

Figure 1(a) shows the Poincare surface of section
for the molecule-field Hamiltonian Hc, Eq. (1). The
phase space is characterized by two distinct regions,
with the boundary between them indicated by the
dense set of points lying just exterior to the islands of
a 3:2 resonance. This includes a predominantly regular
(interior) region corresponding to bound motion and
quasiperiodic energy exchange between the field and
molecular degree of freedom; and a stochastic (exteri-
or) region in which classical orbits will eventually dis-
sociate. Note, in Fig. 1(a), that dissociation is indicat-
ed by the splatter of points extending out toward large
positive values of x and tending to have negative
momentum.

The work in I and II indicates that the strongest bar-
riers to classical diffusion in two-degree-of-freedom
systems arise from cantori having noble frequency ra-
tios. These are cantori associated with the breakup of
KAM tori with an irrational winding number,
o. =Oui/cu2, where ~i and cu2 are the two fundamental
frequencies (in the present case, Oii = ~F and 0~2 is a
dynamical frequency for the oscillator), whose
continued-fraction representation,

u=ti +(Qi, a2, . . . , 0«, . . . )

Ek = Fk —Irk. (5)

The decay widths are defined by diagonal matrix ele- a2+. . .
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FIG. 2. Contour plots (positive contours only) for the
signer transform of a nonstationary state for an anharmon-
ic oscillator evolving in response to the the radiation field
after (a) 0, (b) 5, (c) 10, (d) 15, (e) 20, and (f) 25 field
periods (v =0.054 ps). The cantori shown in Fig. 1(b) are
also shown in each of the diagrams (a)-(f). A box indicat-
ing the size oft is shown in (a).

FIG. l. (a) The x-p surface of section for the Hamiltonian
describing the interaction between an anharmonic oscillator
and an intense radiation field. (b) Phase-space representa-
tion of the cantori resulting from the breakup of tori with

winding numbers equal to 1 and 2 plus the golden mean.

has ak=1 for all k) a positive integer W. This is
based on numerical evidence'z which suggests that
the flux through these barriers is a relative minimum.
Since noble winding numbers are the most difficult ir-
rationals to approximate by rationals (many terms are
required in the truncated continued fraction), the
strongest barriers to field-induced diffusion can be at-
tributed to those regions of phase space in which the
field and molecular frequencies are most out of reso-
nance. In this sense, the strongest barriers ~ill be as-
sociated with cantori in which n = n + ~~, where
v (5'~z —I)/2= (1, 1, 1, 1, 1,. . .) =0.618. . . is the
venerable golden mean, and n is an integer.

Using the techniques described in I and II, we can
construct a representation, on the surface of section,
of the cantori which tend to be the strongest barriers.
These are shown in Fig. 1(b) and correspond to the
breakup of KAM tori with rotation numbers equal to
1+kg and 2+kg. (We were unable to generate can-
tori with a = n + ug with n & 2 because the phase
space in these regions is too unstable. ) The classical
flux (per mapping on the surface of section) across
I+~~ was 0.013 a.u. , and the flux across 2+v was 2
orders of magnitude larger, 1.163 a.u. (Recall that
h' = I in atomic units. )

Figure 2 sho~s several contour plots of the signer
transform of the time-dependent wave function 'P; at
selected times during the first 25 field periods
(~=0.054 ps). For clarity, only positive contours are
shown. Contours were taken in fixed increments, with
the smallest value corresponding to between —,

' and —,
'
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of the maximum.
The system initially was in the fifteenth field-free

oscillator eigenstate, Fig. 2(a), which is localized
predominantly in the region of 2+ vs. The subsequent
time development, indicated in Figs. 2(b)-2(f), indi-
cates that the dynamics is dominated by an oscillation
in the classically stochastic region localized between 1

and 2 plus the golden-mean cantori. Examination of
state-to-state transition probabilities indicates that this
oscillation corresponds to a Rabi cycling of amplitude
between the eleventh, thirteenth, and fifteenth oscilla-
tor eigenstates, with the primary contribution arising
from states 11 (which is localized in the region of the
1+kg cantorus) and 15.3e During the 100 field
periods for which the dynamics was followed, there
was never any buildup in probability outside the 2+ vs
cantorus, except for the type of small extensions to
positive x in the Wigner transform that are exhibited
in Fig. 2. Dissociation results from leakage of proba-
bility from these extensions. The wave packet thus
senses the underlying 2+ ug cantorus, which blocks its
dissociation, even though classical trajectories easily
penetrate it!

In summary, cantori in classical stochastic regions of
phase space, while permitting extensive classical flow,
may effectively act as barriers to quantum wave packet
evolution. As a result, the wave packet remains well
localized for long periods of time in the classically sto-
chastic region.
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