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The interpretation of an observed distribution of
pointlike objects often involves assessing the signifi-
cance of clusters of voids. For example, one may ob-
serve with a neutrino telescope! a cluster of several
events within a small solid angle, or one may observe a
large void in the distribution of rich clusters of galax-
ies.2 One then wishes to determine the likelihood of
the observed cluster or void arising as a statistical fluc-
tuation, under the assumption that the objects are ac-
tually randomly distributed. Unless this probability is
low, it is not reasonable to regard the signal detected
by the telescope as evidence for an astrophysical point
source of neutrinos, nor to regard the rich-cluster void
as dramatic evidence for very large scale structure in
the universe.

One way to test the hypothesis that a set of points is
randomly distributed is to check the validity of the
Poisson formula,

P(nV)=(1/k") (nV)ke=", (1)

for the probability that a randomly selected region of
volume V contains k points, if »is the mean density of
the points. However, for clusters so dense or voids so
dilute that the corresponding Poisson probability is ex-
tremely small, it is far more useful to know the expect-
ed number of clusters or voids located anywhere in the
entire observed region. In principle, the expected
abundance of such dense clusters or dilute voids could
be determined by Monte Carlo simulations. However,
rare occurrences are not so easily simulated, and at any
rate it is evidently desirable to be able to express the
answer in an analytic form. Thus, in this Letter, we
derive such expressions for the expected abundance of

clusters and voids in a sample of randomly distributed
objects, in the limit in which the clusters or voids are
rare. These formulas can be generalized to the case of
correlated distributions. To illustrate their use, we ap-
ply our results to the distribution of rich clusters of
galaxies in the sky.

The Poisson probability P, is independent of the
shape of the region in question. In contrast, to define
what constitutes a cluster or void requires some speci-
fication of an acceptable shape, and the expected abun-
dance of such configurations will, in general, depend
on that specification. For example, we may decide
that k objects distributed in d dimensions constitute a
cluster if there is a cube of volume V and a priori speci-
fied orientation which contains these k objects and no
others. Then, as we will show, the expected number
of such clusters per unit volume is

D(n,V)=V-IP(nV)kUM1+0(nV/Kk)], 2)

where n is the mean density of the objects, and k is
large compared to nV. For k comparable to nV, the
mean number of objects in the volume V, there are
typically many overlapping clusters, and the abundance
of clusters is not of great interest; there is considerable
arbitrariness in counting the clusters when they over-
lap. The O(nV/k) correction in Eq. (2) depends on
how the overlapping clusters are counted.

A void in a d-dimensional distribution of objects
may be defined as a cluster of k objects where k
<< nV. (For k=0, the void is the region in which
our cube of a priori specified orientation can be con-
tinuously transported without encountering an object.)
We will show that the expected number of such voids
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per unit volume is

D(n,V)=V=1P(nV)(nV)1+O(k/nV)+0(1/nV)4~1]. (3)

Equations (2) and (3) apply to clusters defined not
only by cubes, but also by rectangular solids of speci-
fied shape and orientation, and, in two dimensions, to
circles and ellipses. The corresponding formula for
three-dimensional spheres is also given below. The
generalizations to shapes with arbitrary orientation and
correlated distributions of objects are briefly discussed.

The reader should note that our Egs. (2) and (3)
cannot be reproduced by multiplication of the Poisson
probability by the density of nonoverlapping volumes
of size V. This naive procedure fails because the actu-
al clusters or voids will not typically coincide with any
member of a set of a priori selected nonoverlapping
volumes. The naive procedure therefore underesti-
mates the abundance of clusters or voids by the factor
k?or (nV)9respectively, which in practice can amount
to orders of magnitude.

It is simplest to begin by considering clusters among
randomly distributed objects in two dimensions, where
k objects are said to constitute a cluster if there exists a
square of side L, with sides oriented parallel to the x
and y axes, which contains those k objects and no oth-
ers. To search systematically for such clusters, we may
introduce a square lattice with spacing €, and center at
each site a trial square of appropriate size and orienta-
tion. Each trial square containing exactly k objects lo-
cates a cluster, and, in the limit € — 0, every cluster is
found by some square. However, each given cluster is
found by many different trial squares. To avoid over-
counting the clusters, we order the trial squares by
sweeping through the lattice; we sweep through each
row from left to right, and order the rows from top to
bottom. Now there is a unique trial square in this or-
dered sequence which has the first encounter with each
cluster of k objects. To compute the density of clus-
ters of k objects, we may equivalently compute the
density of these first encounters.

The fraction of trial squares containing k objects
which are also first encounters is given by the sum of
two generic possibilities: The trial square immediately
preceding the first encounter of a particular set of k
objects contains either kK +1 or k—1 objects. (Since
we will ultimately take € — 0, it suffices to consider
objects leaving or entering the trial square one at a
time.) The former case may be neglected in the limit
k >> nV. Therefore, in this limit, the first encounter
square always contains one object just inside its leading
edge, in a strip of width € and length L. Furthermore,
since no trial square in the previous row contained
these k objects, the first encounter square also con-
tains one object just inside its bottom edge,? in a strip
of width € and length L. Thus, we may distinguish
between two types of first encounter squares. Either
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! there is one object along the leading edge, one object

along the bottom edge, and k& — 2 objects in the interi-
or of the square, or there is one object in the intersec-
tion of the two strips, an €X e region in the bottom
right corner of the square, and k — 1 objects in the in-
terior of the square. Adding together the two types,
we find that the fraction F of all squares containing k
objects which are also first encounters is*

Pe_,(nL?) Po_1(nL?)

_ 2
F=nel) =005 Po(nL?)

+ (ne?)

€

L2

k2, 4

up to corrections of order (nV/k). Multiplying by
P, (nL?)/€?, the expected number per unit volume of
squares containing k objects, we obtain Eq. (2), with
d=2and V=12

To compute the abundance of voids in the limit
k << nV, we need consider only the case in which the
trial square immediately preceding the first encounter
square contains k + 1 objects. Therefore, there is one
object just outside the trailing edge of, and one just
above, the first encounter square, each in a strip of
width € and length L. The fraction of trial squares
containing k objects which are also first encounters is
thus

F=(nelL)*= (¥ L% (nL?), ©))

in the limit k << nV. Multiplying by P,(nL?)/€?, we
obtain Eq. (3).

This derivation may be repeated for d-dimensional
cubes with specified orientation, yielding Egs. (2) and
(3). For example, in three dimensions, we may distin-
guish three types of first encounters which are relevant
in the limit kK >> nV. The first encounter cube may
contain one object along each of three faces, and kK — 3
objects in the interior; it may contain one object along
a face, one along an edge, and k — 2 in the interior; or
it may contain one object in the corner and k—1 in
the interior. Adding together the abundances of the
three types of first encounter, we obtain Eq. (2), with
d=3. The derivation may also be trivially generalized
to clusters and voids defined by d-dimensional rec-
tangular solids of a priori specified shape and orienta-
tion.

It is evident from the above derivation that the
abundances of clusters and voids generally depend on
the shape of our trial volume. The definitions of clus-
ters and voids used above have the disadvantage that
an orientation for our trial cubes must be arbitrarily
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specified. It is preferable to say that k objects consti-
tute a cluster if there is a sphere of volume V which
contains these k objects and no others, since the
sphere has no orientation. We will therefore derive
expressions for the expected abundance of clusters and
voids defined by circles in two dimensions and spheres
in three dimensions.

To search for clusters defined by circles, we intro-
duce a square lattice with spacing €, and center at each
site a trial circle of radius R, wR2= V. As before, we
compute the density of clusters of k objects by finding
the density of first encounters. In the limit k >> n/V,
we may distinguish two types of relevant first en-
counters. Either the first encounter circle contains two
objects along its circumference, and k — 2 objects in its
interior, or it contains one object at its very bottom,
and k — 1 objects in its interior. The expected density
of clusters must therefore take the form

Di(n, V)= V1P (nV)ak(k—1)+Bk].  (6)

D (n,V)=V1P.(nV)lak(k—1)(k=2)+Bk(k—1)+ykl].

To determine o« and 8 consider the limit nV — 0. Ob-
viously, in this limit D;(n, V)= n;, thus 8=1. Furth-
ermore, two objects form a cluster if their separation is
less than 2R. For each object, the probability that
there is a second object within a distance 2R is nwm
x (2R )*=4nV. Dividing by two to avoid overcount-
ing the two-object clusters, we have D,(nV)=2n?V,
and a=1.

In searching for voids with kK << nV, we need con-
sider only one type of first encounter. The geometry
which determines the abundance of these first en-
counters is identical to that which determines the
abundance of the first type of first encounter in the
limit kK >> nV. Therefore,

D (n,V)=V-IP(nV)a(nV)? @)

for k << nV, and we conclude that Egs. (2) and (3),
with d =2, apply to clusters and voids defined by cir-
cles. (They also apply to ellipses of fixed orientation
and eccentricity.)

(8

Again, we can determine «, 8, and y by consideration of the limit nV’ — 0. From D(n, V) =n, D,(n, V) =4nV,
we obtain y =1, 8=3. To determine a, we must find D;(n, V).

To calculate D;(n, V) for nV << 1, we observe that, given two points with separation z < 2R, the allowed posi-
tions of a third point such that all three are contained inside some sphere of radius R fill a solid with volume

W(z)=2m{$R>— $zR?*+ 522+ R*[R?— (2/2)*1/2sin~'(z/2R)}.

(The boundary of this solid is a figure known to drafts-
men as a ‘‘four-centered approximate ellipse,’’ rotated
about its minor axis. The ‘‘approximate ellipse’’ con-
sists of four circular arcs, two of radius R, and two of
radius 2R.) And given one object, the probability that
there is a second object with separation from the first
between zand z + dz is n?4mwz? dz. Therefore, the den-
sity of three-object clusters is

2R
D;(n V)= -61—n3j;) 4wzt dz W(z)

= V1P (nV) [ 2w+ 21], (10)

and we find «=37%32, B=3, and y=1. Having
determined «, we also know that the density of voids
is

D (n,V)=V~'P.(nV)(37%32)(nV)3, 1

in the limit £ << nV.

If our trial volume is not a sphere, and is permitted
to have an arbitrary orientation, then the likelihood of
finding a cluster of k objects evidently increases. Con-
sider, for example, rectangles in two dimensions with
sides of fixed length but arbitrary orientation. In an
ordered search for trial rectangles containing k objects,
the first encounter rectangle for a given cluster of k
objects will typically have three objects distributed
along its boundary, and k — 3 in its interior. The gen-
eral rule is that the first encounter trial volume typical-

9

ly has as many objects distributed along its boundary as
the number of degrees of freedom inherent in the
search; e.g., for ellipsoids of fixed volume with arbi-
trary orientation and eccentricities, this number is
eight. If the trial volume has dJ degrees of freedom,
then the formula analogous to Egs. (6) and (8) for the
expected density of clusters is

Dy(nV)=V-IP(nV)alki+ O(k4-1)], (12)
and the formula analogous to Eq. (7) for the density of
voids is

D(n,V)=V=1P.(nV)a(nV)4 (13)

For rectangles or ellipsoids of arbitrary orientation, the
coefficient « and the coefficients of the nonleading
powers of k in Eq. (12) are difficult to determine
analytically, but should be amenable to a Monte Carlo
evaluation.

For objects with nontrivial correlations, a generaliza-
tion of the Poisson formula can be derived that
expresses the probability that a randomly selected
volume contains k objects in terms of integrals of
correlation functions.® A corresponding generalization
of our formulas for D,(n, V) can also be derived. The
derivation is particularly simple for voids on scales
much larger than all correlation lengths,® or clusters
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much smaller than all correlation lengths.

As an application of our formalism, we consider the
(two dimensional) distribution of rich clusters of
galaxies in the sky. A large region of the sky has been
found? to contain no nearby Abell clusters, of ‘‘rich-
ness class’”> R =1 and at a distance less than about
250h~! Mpc, where Hy=100h km s~! Mpc~! is the
Hubble constant. In order to assess the significance of
this void, we should determine whether it could plau-
sibly have arisen as a statistical fluctuation. Although
the positions of the rich clusters are known to be corre-
lated,” we will ignore the correlations, and estimate the
likelihood of a large void assuming that the rich clus-
ters are randomly distributed.

In a sample of 71 rich clusters projected on the sky,
the largest observed empty circular region is one in
which the expected number of clusters is seven. The
expected density of circular voids of this size or larger
is given by Eq. (3), with d=2 and nV =17, and we find
ViowDo(n, V) =(71/7)(7*)e~7=0.45. After making
a ‘‘fiducial-volume’’ correction—circles whose centers
are too close to the boundary of the sample are not
allowed—we conclude that the probability of finding a
circular void with n¥V' =7 is about 20%. Thus, the
discovery of such a void would be unremarkable even
if the rich clusters were randomly distributed.

In the same sample of 71 rich clusters, a roughly
rectangular empty region is observed in which ten
clusters were expected. A search in two dimensions
for a rectangular void of a given area but with arbitrary
center, orientation, and eccentricity has four degrees
of freedom; the expected density of voids is therefore
given by Eq. (13), with d=4. The coefficient in Eq.
(13) has been determined by a Monte Carlo calcula-
tion reported in Ref. 6 to be « —0.1. The density of
empty rectangular regions of volume V or greater is
therefore

Dy(n,V)=(0.1)V=1(nV)ie~", (14)

and the probability of finding a void with nV' =10 in a
total sample of 71 objects is roughly 30%.° (Because
the determination of « is rather crude, we have not at-
tempted to include a fiducial-volume correction.)
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Again, the observation of such a void would not be
surprising even if the rich clusters were randomly dis-
tributed.

Since the rich clusters are not really randomly distri-
buted,”-? voids inconsistent with the hypothesis of ran-
domly distributed clusters should be expected to ap-
pear in a sufficiently large sample. For such a sample,
the abundance of voids might well be used to test
more realistic hypothesis concerning the distribution
of clusters. Techniques for carrying out such tests
have been described in Ref. 6.

This work was supported in part by the U.S. Depart-
ment of Energy under Contract No. DEAC-03-81-
ER40050. One of us (J.P.) is the recipent of an Alfred
P. Sloan Foundation fellowship and a National Science
Foundation Presidential Young Investigator Award.
Stimulating conversations with John LoSecco, Steve
Otto, Ben White, and Mark Wise are also gratefully
acknowledged.

1J. M. LoSecco et al., ‘A Study of Atmospheric Neutrinos
with the IMB Detector,” in Proceedings of the Nineteenth
International Cosmic Ray Conference, La Jolla, California,
1985 (to be published).

2N. Bahcall and R. Soniera, Astrophys. J. 262, 419 (1982).

3The possibility that there is one object just above the first
encounter square can be neglected for k >> nV.

4The procedure described sometimes counts a given clus-
ter more than once, but makes a negligible error in the limit
k >> nV.

5S. D. M. White, Mon. Not. Roy. Astron. Soc. 186, 145
(1979).

6S. Otto, H. D. Politzer, J. Preskill, and M. B. Wise, Cali-
fornia Institute of Technology Report No. CALT-68-1254,
1985 (to be published). This paper used an alternative
method for computing the density of voids: With trial
volumes centered at each site of a fine lattice, the number of
voids was identified as the total number of empty trial
volumes divided by the average number of empty trial
volumes per single void.

N. Bahcall and R. Soniera, Astrophys. J. 270, 20 (1983).

8D. J. Batuski and J. O. Burns. Astron. J. 90, 1413
(1985).



