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Thermodynamics of a Narrow-Band Bose Gas on a Lattice
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In strong-coupling electron-lattice systems local pairs of electrons form —the so-called bipolarons.
They behave like a Bose liquid on a lattice and have very small bandwidth t. %'e show that the
specific heat for those bosons in the normal phase is extremely similar to that obtained for electrons
in equivalently narrow bands: a behavior linear in T for low temperature (T &( t) and a T 2 law

for high temperature (T» t) In con.trast, the magnetic susceptibility for triplet bosons differs
qualitatively from that of electrons in the low-temperature regime. %'e discuss those results in view
of a possible application to compounds exhibiting heavy-mass carriers.

PACS numbers: 71.38.+i, 65.40.Em, 75.20.—g

In 1925 Anderson' pointed out that in amorphous
semiconductors, for sufficiently strong electron-lattice
interaction, local on-site electron pairs can occur.
Similarly, in crystal lattices, locally bound states of two
small polarons (so-called bipolarons) occur in quite a
natural way resulting in the covalent bonding of adja-
cent metal ions. Probably the first such systems ever
reported in the literature were Ti407 and P-Na„V20&.
In the meantime numerous other compounds have
joined their rank: WO3 „, PbTe(T1), LiTi204, poly-
pyrrole, etc.

What type of bipolarons will form depends to a great
extent on the detailed lattice structure. In general it
can be expected to be rather difficult to form on-site
bipolarons since the on-site Coulomb repulsion which
has to be overcompensated by the effective lattice-
induced attractive interaction is rather big. The forma-
tion of intersite bipolarons, in contrast, is much easier
to achieve. This is because the lattice-induced attrac-
tive intrabipolaron interaction decreases only very
weakly as the intrabipolaron distance increases. In
contrast, the Coulomb repulsion for on-site bipolarons
is considerably bigger than that for intersite bipolarons.

Whether bipolarons form singlet or triplet pairs will

depend essentially on the orbital degeneracy of the
atomic wave functions, where the Hund exchange in-
teraction would favor triplet versus singlet bipolarons.
This applies for intersite bipolarons and in particular
for such systems which are composed out of electroni-
cally well-defined clusters, such as Chevrel phases.
There a bipolaron spreads over six metal atoms and
the likelihood of orbital degeneracy is big. As a conse-
quence a system like EuMo6S8 could possibly exhibit
triplet bipolarons. Other substances where triplet bipo-

larons might play a role are materials which show
coexisting superconductivity and ferromagnetism.

The picture of mobile, spatially separated electron
pairs on a lattice permitted us3 to make the link with
liquid He. As it turns out, the bipolaronic system is
an even better candidate than 4He for a Bose liquid on
a lattice.

As previously shown, in narrow-band crystals the
strong electron-phonon interaction leads to the well-
defined narrow bipolaronic band. Its band half-width t
is significantly reduced with respect to the initial elec-
tron bandwidth D by an exponential factor:

t & (D'/zb, )exp( —2g'), (I)
where 6 is the bipolaronic binding energy.

In the simplest case of on-site electron pairing 5 is
given by the difference between twice the polaronic
binding energy eb (or in other words the polaronic
atomic level shift) and the on-site Coulomb repulsion.
g'= eb/co, where to denotes the characteristic phonon
frequency, and z is the number of nearest neighbors.

In such a way d or f-band elec-trons in narrow-band
crystals with strong electron-lattice interaction (such
that A. = 2zg'to/D ) 1, where A. denotes the usual
dimensionless coupling parameter in BCS theories)
form small bipolarons which behave as hard-core bo-
sons on effective sites (single atoms, dimers, clusters
of metal atoms) on a lattice. They tunnel through the
crystal, having a large but finite mass. Quite different
from Cooper pairs, small bipolarons exist above the
critical temperature T, of their superfluid phase, and
we shall show that they can be determinant in the ther-
modynamical properties in the normal state in a
number of d and f-band comp-ounds.
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In this Letter, we report on the unusual temperature
dependence of the specific heat of such a Bose gas in a
narrow band. It turns out that it is practically the same
as in the case of electrons in equivalently narrow
bands. This is true over the entire temperature re-
gime. These results on the specific heat, together with
the temperature dependence of the magnetic suscepti-
bility of triplet bosons, some estimation of such

parameters as the effective mass of the carriers (based
on a microscopic theory3), and a power-law behavior
for C, —the specific heat in the superconducting
phase —lead us to the speculation that some of the d-
and f-band compounds with strong electron-lattice in-
teraction may indeed represent a heavy Bose liquid cf
smal. l bipolarons.

The specific heat of bosons in the normal phase as
well as of electrons is given by the usual expression

r

Cb, = —(2s+1)T„dg/V(g) ' ~ + +
j I,

where s denotes the spin of the carriers (s =0 for
singlet bosons, s = 1 for triplet bosons, and s = —,

' for
electrons). N(() denotes the density of states per
atom and per spin; fb, is the Bose (b) or Fermi (e)
distribution function. The chemical potential p, is de-
fined by the atomic concentration of the carriers n,
which is supposed to be temperature independent:

(3)

We are interested in the temperature dependence of
the thermodynamic quantities on a temperature scale
which is of the order of the bandwidth (a few milli-

electronvolts in the systems of interest). Moreover,
we restrict ourselves to a discussion of the normal-

I

1 1

2s+ I ~P v2 -~ Bp, . 2 x
„dx x +x p, — slnh

SP " -ls p -BP

state properties, well above T, —the transition tem-
perature to the superfluid phase. Under these condi-
tions the fine structure of the density of states of the
low-energy states is of no importance. Hence we
choose a square density of states,

(4)

for which T, = 0 and which permits us to treat the nor-
mal phase in a consistent fashion. In such a way we
can compare self-consistently the thermodynamical
behavior of electrons and bosons in the normal phase
down to zero temperature.

Introducing the dimensionless parameters P= t/T
and p.

"= p/ T, we obtain for bosons, using Eqs.
(2)-(4),

(5)

I —exp( —2n'/3) . n
p, =ln n

expl8 —exp [(—2n'+ I )P]
'

2s + 1

In the high-temperature limit (P & I), we find from
Eq. (6) that

p,
"= In[n "/(n'+ I)]—p2&& —,

' (I +2n').

Substituting Eq. (7) into Eq. (5) we obtain

Cb = n [ I + n/(2s + I ) ]p /3, p & l.
The coefficient of the T ~ term in expression (8) is
physically quite understandable. Specific heat is con-
nected with the probability of the absorption of ther-
mal energy, which is proportional to the number of oc-
cupied initial states, n, times n + I coming from the
final states, reflecting the two contributions charac-
teristic for Bose systems, i.e., processes connected
with spontaneous as well as induced emission.

Let us next consider the low-temperature behavior
of the specific heat. In this temperature regime
(Pn, P » 1) we obtain from Eq. (7)

p, = —P —exp( —2n P), (9)
which shows that the chemical potential at low tem-

(6)

perature is locked near the bottom of the band
(p, = —t) and is practically temperature independent.
Substituting Eq. (9) into Eq. (5) we thus obtain

Cb = (2s + I )~'/6p, p, pn» 1. (10)

This result shows that bosons in narrow bands at low
temperature have a temperature-independent specific-
heat coefficient, y = C/T, just as for electrons. The
linear temperature dependence in fermion as well as in
boson systems is linked to the existence of a quasi-
locked chemical potential. For comparison we quote
here the results for electrons in the two extreme tem-
perature regimes. On the basis of the same square
density of states as before [Eq. (4)], we obtain4

C, = n (I —n/2)P'/3, P & 1,

C, = ~'/3p, p, pn & 1.

If n && 1, an intermediate temperature region exists
for I/n » P & 1 in which the boson and fermion



VOLUME 56, NUMaER 9 PHYSICAL REVIEW LETTERS 3 MARcH 1986

specific heats show logarithmic behavior:

C&, = —2n ln(nP). (12)

30

1.0—

In such a way bosons and electrons in narro~-band
systems have extremely similar temperature depen-
dences of their specific heats in the normal phase [see
Figs. 1(a) and I(b)} with the following ratio of y's at
low temperature: ) a/y, =s+ —,'. It is necessary to
point out that the temperature region in which ~e ex-
pect the linear behavior of the specific heat can be
very small if n « 1. In this case, we find for y a fair-
ly sharp rise as one approaches T=0 which will

abruptly turn over into a constant for extremely small
temperature (T & nr) For .real systems which show a
transition to a superconducting phase, the region for
the linear temperature behavior of C can practically
disappear if the critical temperature is high enough. In
particular, for ideal bosons we have3 T, —n2/3t with
n && 1. In this case, the low-temperature behavior
will be given by Eq. (12) down to T, .

The T 2 law for the specific heat at high tempera-
ture, common to both fermions and bosons, originates
from the finite value of the band for these particles,
which is a direct consequence of the discreteness of

the lattice. The classical value for the specific heat is

only obtained for continuous media which have infin-

ite bandwidth.
It might be of interest to compare the results for the

specific heat for triplet bosons with the magnetic sus-
ceptibility X, for them (for singlet bosons the magnetic
susceptibility is evidently zero). A simple calculation
following the lines described above yields

(e2nP/3 I ) (e2P e
—2nP/3)

X, = e2& —1
(13)

~here p, z denotes the Bohr magneton.
At high temperatures (nP, p & I ) we obtain from

Eq. (13) a Curie behavior (just as for narrow-band
electrons4 given below for comparison):

X, = (Sru, t2t/3T)n(I+n/3),

X, = (p2tt/T)n (I —n/2). (14)

At low temperatures (Pn, P && 1) the behavior of the
susceptibility of triplet bosons differs significantly
from that of electrons (see Fig. 2):

X, = (4~2a/r )exp( —,
'

n p) —exp(2nt/3T),

X~ = p, a//r const.

In such a way we have shown that, while the specific
heat for narrow-band systems is extremely similar for
bosons and fermions, this is not true as far as the sus-
ceptibility is concerned. See for comparison Figs. 1(b)
and 2.

In conclusion, we briefly discuss the possible appli-
cation of the heavy-boson picture to a class of systems
not mentioned above. The microscopic theory3 which
takes into account the main part of the strong
electron-lattice and electron-electron correlations led
Alexandrov and Elesin~ to propose a small-polaron
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FIG. l. (a) The temperature dependence of the specific-
heat coefficient y = CP for electrons (dashed line) and for
singlet bosons (solid line). (b): The ratios of the triplet
(s = 1) and singlet (s = 0) boson specific heats to the elec-
tron one as functions of temperature (n =0.25).
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FIG. 2. The temperature dependence of the inverse mag-
netic susceptibility for electrons (dashed line) and for triplet
bosons (solid line).
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model for A-15 compounds which successfully ex-
plains their "anomalous" properties for a value of the
electron-phonon coupling constant g —2. Some of
these compounds as well as the Chevrel phases and
other high-temperature narrow-band superconductors
show normal-state y and X which are very similar to
the ones presented in the present work.

Moreover, there remains a controversial issue of
how the Fermi-liquid nature arises from original f
electrons in the so-called "heavy fermion" systems
such as CeA13, CeCu6, CeCu2Si2, UBet3, and others. '
The main unresolved problem is the origin of a very
narrow band (r —0.001 eV) and the role of electron-
phonon correlations. Possibly the answer can be ob-
tained within the theory of bipolarons3: The strong
electron-phonon interaction leads to the formation of
the heavy Bose-type bipolarons which tunnel in a very
narrow band. If we estimate the initial bandwidth of f
states in a rigid lattice as D 0.1 eV, and b is of the
same order of magnitude, ' we obtain the required
value of t & 0.001 eV for a reasonable value of g2 = 2
[see Eq. (1)]. In this picture of heavy-boson liquid,
we obtain quite naturally the main singularities of nor-
mal C and X as well as the power-law behavior of C, in
the heavy-"fermion" superconductors. 5 It is well
known that the specific heat of Bose gas in the super-
fluid region ( T & T, ) has a power-law behavior
C, —T", where n = —', for the ideal gas, and n =3 for
the interacting one as well as the hard-core Bose gas on
a lattice, provided that the interbipolaron Coulomb po-
tential is screened. Most real materials for which we
expect such a bipolaronic picture to hold are made up
of generally two types of electrons: a very large band
(10 eV) of itinerant electrons and a very narrow band
(1 eV) of fairly localized electrons (3d, 4f, 5f). Only
the latter electrons couple strongly to the lattice and
give rise to bipolaron formation. In such a situation
the highly itinerant electrons of the large band will
screen the long-range Coulomb interaction between
the bipolarons.

Suppose, however, that the number of itinerant
electrons is too small to provide an effective screening
mechanism on the bipolaron-bipolaron Coulomb in-

teraction. In that case the low-lying excitation spec-
trum of the phase fluctuations of the order parameter
will be determined by the plasmonlike density fluctua-
tions of the bipolarons. This introduces a gap in the
elementary excitation spectrum in the long-wavelength
regime. At zero temperature this gap is given by the
bipolaronic plasma frequency co~ = [327r e n(n —1)/
rn" ]'~2, where m'" denotes the mass of a bipolaron
which is typically 2 or 3 orders of magnitude bigger
than the free-electron mass of the narrow-band elec-
trons (without any coupling to the lattice). As the
temperature approaches T„ the gap in the elementary
excitation spectrum tends to zero. As a consequence,
for unscreened Coulomb interaction between bipo-
larons we might expect some sort of exponential
behavior for the specific heat, C —exp( —cu~/T), for
T well below T, .

The applicability of the proposed model to concrete
compounds evidently needs morc detailed quantitative
comparison with the experimental results as we11 as
more refined calculations taking into account correla-
tion effects between the bosons. We believe neverthe-
less that the simple picture presented here could have
some intrinsic value in the understanding of the quali-
tative features of systems with heavy carriers.
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