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Theory of Shear-Induced Melting of Colloidal Crystals
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%e propose a theory of shear-induced melting of colloidal crystals based on a nonequilibrium
generalization of first-order freezing theory. The results agree qualitatively with experiment.
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Shear-induced melting' ' is one of the most puzzling
of the many beautiful phenomena observed when a
crystalline (lattice spacing a —5 x 10 A, shear
modulus G —102 dyne cm ) suspension of charged
(Z = 300-1000) submicron polystyrene spheres
("polyballs") is subjected to a velocity gradient e. In
these systems, Bragg scattering persists even in the
presence of shear flow, and disappears only when the
shear rate e exceeds a critical value &,I,. Moreover,
e,~, seems to go continuously to zero as the equilibri-
um melting transition of the crystal is approached. 3 4

Note that, for reasons discussed elsewhere, ' equilib-
rium melting is effected here by the addition of hydro-
chloric acid to decrease the screening length of the in-
teractions. At a critical acid concentration n. , a liquid
state results. Attempts's have been made to describe
shear melting as a purely mechanical instability of slid-

ing layers of crystal, governed by the competition
between the disruptive interlayer forces and the restor-
ing elastic response within a layer. Since the latter
forces, and hence the threshold rate of shear, would
then be proportional to typical shear moduli of the
crystal, which remain nonzero at the equilibrium first-
order melting transition, 3 it is hard to see how this ap-
proach could give a „, 0 as the acid concentration
n n, .

%e show here that the transition can be understood
as an extension of equilibrium melting by deriving a
generalized Hansen-Verlet (HV) criterion. That is,
we show that even in the presence of shear flow,
freezing should set in when the maximum height S
of the structure factor S(q), where q is at a fixed
direction in the flow plane, reaches a certain critical
value. In three dimensions, for freezing into a bcc lat-
tice, this value is

S„„„„(., ~S') =S„[1——,', (-)'(q,/~)'] (1)

when measured in the shear plane at 45' to the flow.
Here 7 is a microscopic diffusion time —10 sec for
polyballs, qo is the radius in reciprocal space of the
most prominent ring of maxima of S (q ) at equilibri-
um, and b is its full width at half maximum at freez-
ing. SHv is the value of S at freezing in the absence
of shear. In addition, we find that the shift in the

coexistence curve is given by

n. (np, e) =
T

1 qo (er)'
12 b, (d lnS /dn, (

in three dimensions, where np is the average polyball
density. To test (2) one needs an estimate, from ex-
periment or microscopic theory, of the dependence of
S on the acid concentration n, . Equation (1), how-
ever, can be tested directly in light scattering or small-
angle x-ray scattering.

Note that these effects are of order (e~)2, and are
hence not likely to be seen at reasonable shear rates in
ordinary liquids, where 7 is of order 10 '2 sec. For
polyballs, the necessary shear rates of around 100 Hz
are easily obtained. A well-known consequence of this
is that a substantial distortion of the Debye-Scherrer
ring of maxima of the static structure factor S(q ) of
the polyball liquid can be observed' at shear rates of—10 Hz.

We now describe our theory and calculations. Recall
that the equilibrium transition from liquid to crystal
occurs when the free energies for the two phases be-
come equal. In order to obtain a similar criterion for
shear melting, we need the generalization of a free-
energy functional. '0 Since we are not at equilibrium
this cannot be constructed by simple means. Instead
we calculate the distribution P [p] for the polyball den-
sity fluctuations in a shear flow from a Fokker-Planck
equation" and extract the free energy from it.

To this end, let us consider a polyball suspension at
equilibrium in the liquid phase, but near crystalliza-
tion. The static structure factor S (q ) = (p~ p «),
where p is the polyball density, has a sharp maximum
on a wave-vector shell ~q) =qo, and weaker peaks at
larger q. For q =qo, we can write

S(q) =kaT/[r+c(q' —q02)'],

so that S (qo) = ka T/r. Since S (q ) is the Fourier
transform of the density-density correlation function, a
simple phenomenological Landau free energy'2 which
wi11 describe the liquid-solid transition as a density-
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wave instability is

F = —,
' d~x d~x'A (x—x') hp(x) hp(x') + d~x { —g [hp(x) ]'+ u [hp (x) ]4 } +F,

~here

A (x) =~ (27r) "d~q Aqexp(tq x),

with

A q
——r + c (q' —q02 )'

(5a)

(5b)

near q = qo. Here Fo is the free energy of the uniform liquid, hp = p(x) —
po is the departure of the density at x

from its quiescent value po, and g and u are phenomenological parameters. This free energy can be used to deter-
mine, for instance, the likely symmetries of crystals near equilibrium melting. "

Now suppose that a plane shear flow v= eyx is imposed on the suspension. Provided that one neglects the ef-
fect of density fluctuations on the velocity field (i.e., that one assumes passive convection) one can describe the
density fluctuations using the Langevin equation

(8, +eyB, )p(x) —I'7'SF/hp(x) =f(x, t),
with

(f (x,t)f (x', t')) = 2ksTS(t —t') ( —I'2')5~(x —x'),

or equivalently" using the Fokker-Planck equation

8,P = — d~x[5/hp(x)] {'7 [p(x)eyx] —I "7'[SP/Sp(x)+P 'PSF/hp(x)1}.

(6a)

(6b)

Here the last term on the left-hand side in (6a) represents the diffusion of the interacting polyballs, I' is a kinetic
coefficient, P= (kaT), and f(x, t) is a thermal noise source whose statistics guarantee that at equilibrium
(&=0), P[p]=exp( —PF[p]) is a stationary solution of (7). Note that when ~~0, exp( —/3F) is no longer a
solution to (7).

Our method of solution is very simple. We seek stationary solutions P [p] to (7) by expanding lnP in a function-
al Taylor series in hp. Schematically, we write

—P 'lnP = —,hpK25p+E3(hp) +E4(hp)

as in equilibrium Landau theory, and determine the K, s, which are to be interpreted as operators, by calculating
correlation functions' from the Langevin equation (6). E2, for example, is just the inverse of
G(x —x') = (hp(x)hp(x'))/kaT, the bare equal-time autocorrelation of the density in the presence of a shear
flow. Its Fourier transform G (q ), as can be seen from Eq. (6), satisfies

[ , eq„8/Bq„+ I'q2A —]G(q) = k&TI q2,

so that

(9a)

G(q) = 1+
21q A

kgTAq ' (9b)

6q» 6q»

2I"q2A ~ 2I q Aq
ka TA (9c)

Here we have imposed stationarity (B,G =0) and, in the spirit of mean-field theory, ignored fluctuation correc-
tions to G (q) generated by the nonquadratic terms in F. In this way, we can also calculate K3 and K4. In this sim-
ple model where the nonquadratic terms in F are purely local and the renormalizations are ignored, we find that
the vertices retain their equilibrium values:

&3(q. q2. q3) =g(2 )'5(q +q2+q3).

E4(qt, q2, q3, q~) = u (2n ) 5 (q) + q2+ q, + q~).

(10)

However, if K3 or E4 had a more complex dependence on q s, then nontrivial ~ dependence would be generated.
The equal-time density correlations in the shearing suspension are thus, to leading order in e, those given by the
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probability distribution

P [p,e]~ exp( —pter [p.,e]),
which solves (7) with

0[p,.e] = —,
'

» (2m) ~d~q k TG '(q) lsp I'+„td~x[ —g(~p)'+u(5p) ],

(12a)

(12b)

with G(q) given by (9b). We can thus treat 0 as the Landau free energy for the liquid-solid transition in the
presence of shear. Note that for q 0, G(q) —kaT/A~, as is seen from the fact that for q„=0 the shear term
drops out of (9a). Thus 0 evaluated for the uniform liquid is still Fo. 0 differs from the equilibrium free energy
F [Eq. (4)] only in its quadratic term, that is, in G (q), the shear-dependent static susceptibility. From (9c), one
obtains (after some straightforward algebra) the maximum value of pG (q):

r, ' (8) = PG (8, e) = r ' [ I —(e~)'(cqo /r )cos 8 sin 8] + 0 ((er ) ),

vvhich occurs at

q = q (8, ~) = qo[1+ —,
' er sin8cos8] + 0 ((~~)'),

(13)

(14)

where 8 is the angle between the y axis and the projection of q into the xy plane, and r = (I"qor) '. This max-
imum value is less than r, the equilibrium value, except at 8=0, n/2, m, 3n/2; shear reduces equal-time
correlations in the fluid. The distortion of the ring of maxima can be removed by a simple change of coordinate:
q q+ , e7q„y—This.means that we must determine the nature of the density-wave instability in a fluid whose
structure factor has an angle-dependent maximum G (8, e), on the sphere Iql = qo, given by (13).

The condition for the occurrence of this density-wave instability is obtained from the Landau free energy

0[n] = —,
'
J [r,(8) +c(q —

qo ) ]In, l'(2m) d"q+ J d x[ —gn (x)+un (x)],

& [p,~l = —,
' r.rr(~) Ipo I'+ 0 (pG), (16a)

where pz is the amplitude of the undistorted density
wave, and

r,„( —,
' [2r + r, (8=450) ] ) r—— (16b)

for a 3D bcc lattice.
Thus, if in the absence of shear the system was on

with r, (8) given by (13). Here nq =Sp(q —,'erq„—y)
Suppose we are at the coexistence curve of the
unsheared liquid. The analysis of Alexander and
McTague" tells us that the liquid will freeze into the
crystalline structure which minimizes the free energy
(viz. , bcc in 3D and hcp in 2D). These structures
have the largest number of triangles of the reciprocal
lattice and therefore maximize the (negative) contri-
bution of the cubic term in F. Now consider the effect
of a small shear flow v= eyx. The free energy for the
transition is now (15), which has the same cubic and
quartic terms as the equilibrium F but a larger quadrat-
ic term. We can therefore simply use Alexander and
McTague's'3 results to find that the phase into which
the system will first freeze, in terms of the order
parameter n~, is a hexagonal lattice in t~o dimensions
and bcc in three. In terms of the physical order param-
eter Sp~ the reciprocal lattice is deformed in accor-
dance with (14). Using (15) one readily obtains the
free energy 0 of the distorted crystal relative to the
liquid to leading order in ~:

l
the coexistence curve, then in the presence of shear it
will be in the liquid phase. Equivalently, shear causes
freezing to be postponed until r ' exceeds the value at
which freezing occurred in the absence of shear. The
transition is still governed by a free energy with a cubic
term and hence remains first order.

$ince the free energy for the uniform liquid remains
unchanged, 0 has to decrease to the same critical
value for freezing to occur as it did in equilibrium. In
other words, a density wave should set in when

ff( t ) SHv'. This leads to Eq. (1), which can be
tested directly by experiment.

The data available at present give the acid concentra-
tion at melting, n„as a function of e. From (16b) we
can say that

d inn„/de2= ——,', (cqo /r ) (d inn, /d lnr )r

in three dimensions, leading to Eq. (2). We therefore
need the dependence of the equilibrium maximum
height r ' of the structure factor on the concentration
n, of acid. As a rough estimate, '5 r ' drops from the
HV value of 2.8 to about 1 ~hen n, is increased from
n to 2n. . %e take experimentally observed' values
of r (16 ms for 0.109-p,m polyballs at 0.160/0 volume
fraction) rescaled assuming r —

qo
' —(vol. fract. )2~3

to give a value for 7 appropriate for available data
vvhich are at 4'/o volume fraction. Molecular-dynamics
simulations' of S(q) at freezing give cqo/r =30 for

947



VOLUME 56, NUMBER 9 PHYSICAL REVIEW LETTERS

both a hard-sphere liquid and a one-component plas-
ma. Combining these numbers we estimate that
d Inn, /de = 2X10 sec . Preliminary data' give a
value of 5 X 10 ' sec2 which is the correct order of
magnitude.

Finally, a few words of caution. First, our theory
works with strictly stationary states and cannot in its
present form treat the complex, nonstationary, partial-
ly ordered states seen by Ackerson and Clark, '2 who
study shear melting at stresses cr & a i, the ideal
strength of the crystal. Lindsay and Chaikin3 4 work at
a & a.i/3, and it is with their data that we compare our
predictions. Secondly, we probably overestimate the
effect of shear since for o. & o.i the appearance of den-

sity waves will affect the velocity profile, thus violating
the approximation of passive convection.

It should now be clear that further work needs to be
done to determine how successfully the theory com-
pares with experiment. Detailed measurements of the
behavior of e,i, when n, = n. need to be performed
to verify the n. —~ law. Better still would be a direct
test of Eq. (1) based on structure-factor measure-
ments. The need to linearize r (n, ) could be eliminat-

ed by use of an accurate microscopic calculation' "of
S(q). This would result in an n. accurate beyond

0 (e ). Finally, since mode coupling away from
equilibrium gives rise to shear dilatancy's and alters
static correlations, '9 a study of its effect on the shear
melting transition would be most worthwhile. These
calculations are now in progress.
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