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Length-Twist Parameters in Stiing Path Integrals
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An approach to multiloop string path integrals is presented vvhich expresses them in terms of
Green's functions on triply connected domains or "pants. "
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String theories are promising candidates for realistic quantum theories of matter and gravity. The type-I SO(32),
type II, and heterotic strings are likely to be finite to one-loop order. Recently progress toward the understanding
of multiloop amplitudes has been made both in the light-cone and in the covariant formulations. 3 In particular,
in Ref. 3 we have obtained the following formula for the Polyakov partition function for a closed bosonic string
and an arbitrary number h of loops in the critical dimension d = 26:
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Recall that the world sheet in this case is a closed sur-
face M with h handles, and Moduli(h) is the space of
conformal structures (conformal classes of metrics,
distinct under reparametrizations) on M. Each ele-
ment of Moduli(h) can be represented by a metric g of
curvature —1 if h ~ 2, curvature 0 and area 1 if h =1.
The tangent space to Moduli(h) at g can then be
viewed as the space of quadratic differentials, which is
of dimension 2 when h = 1, and of dimension 6h —6
when h ~ 2. The Weil-Petersson metric on
Moduli(h) is obtained by pairing quadratic differen-
tials and integratin~ over M through use of g. The
operators A- and P1 I'1 are respectively the Laplacians
on scalars and vectors. [For scattering amphtudes
there are additional factors in (1) involvinj, Green's

A

functions. ] The determinants of 5- and P~P~ have
been expressed as special values of the Selberg zeta
function and its derivative.

In this Letter we shall present a different approach
based on characterizations of conformal structures by
length-twist or "Fenchel-Nielsen" parameters. Be-
sides their simple geometric interpretation, these
parameters have the advantage of yielding a simple
formula for the Weil-Petersson K'ihler form and mea-

sure, 4 and of being well adapted to the Feynman path-
integral formalism. The formula we obtain this way
represents Zh (for h ~ 2; for h =1 it reproduces the
classical formula for one-loop amplitude') in terms of
Green's functions on "pants, " i.e., constant-
negative-curvature surfaces with geodesic boundaries
and the topology of a sphere with three holes cut out.
The Green's functions on pants are likely to be inti-
mately linked with an off-shell version of the full
three-string vertex.

The basic building block of negative-curvature sur-
faces is the "pair of pants, " which is topologically a
sphere with three holes cut out. A conformal struc-
ture on the pants can be represented by a metric of
curvature —1, with respect to which the three boun-
daries yt, y2, y3 are geodesics. Such a metric is in turn
characterized by the lengths l&, l2, and l3 of the three
boundary geodesics. This can be seen by noting that
the pants arise from gluing together two isometric hex-
agons, which are obtained by cutting the pants along
three geodesics Xt, X2, X3 perpendicular to y2 and

Y3 ~ y3 and Y j Yf and y2, respectively (see Fig. 1 ) .
Basic hyperbolic geometry shows that a hexagon with
right angles and geodesic sides is completely specified
by the lengths (which can be chosen arbitrarily) of

FIG. 1. Decomposition of pants into two isometric hexa-
gons. FIG. 2. Hexagons in hyperbolic geometry.
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FIG. 3. Decomposition into pants.

three alternating sides, in particular l, /2, l2/2, and
l3/2. (See Fig. 2.)

Now a compact surface M with it ( ~ 2) handles can
be decomposed into 2h —2 pairs of pants P, ,
1 «j «2h —2, by cutting M along 3it —3 closed
curves y;, 1«i «3h —3 (see Fig. 3). To obtain a
constant-curvature metric g on M, ee begin by select-
ing constant-curvature metrics on the P, 's which can
be glued together along the y s. The metrics on two
pairs of pants will extend across the gluing if it takes
place along a geodesic of the same length. Thus we
can take an arbitrary set of values (l;) C 8+3" ' for the
lengths of the y, 's and glue together the corresponding
metrics in the P, 's. A natural way of gluing is to
match the corners of the hexagons described above,
but we can also glue after making a relative twist of an
arbitrary angle @; 6 8 along y; (see Fig. 4). The
constant-curvature metrics on M obtained this ~ay
represent precisely Teichmuller space Ta, i.e. , confor-
mal classes of metrics obtained under reparametriza-
tions continuously deformable to the identity. To

FIG. 4. A gluing with twist of an angle P.

obtain Moduli( l'2), we still have to divide Ta
= (8+ &R)3" 3 by the mapping class group I „,
which is the group of the disconnected diffeomor-
phisms of M. The mapping class group evidently con-
tains the subgroup Z3" ~ generated by the integral
twists. It is in general a complicated object, and it is an
important question to determine its fundamental
domain in (R+ &&8) "

In terms of the length-twist coordinates (l;, @;)
& (R+ x 8 )'", the Weil-Petersson Kahier form can

be expressed as"

3 —3

0)wp —— dl, hd@,

so that d(%'eil-Petersson) reduces to dl; dl3$ 3
x dpi d@3„3,and the partition function becomes
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In the functional measure N'X, the zero mode is omitted and the measure ~~X is normalized by the usual require-
ment of ultralocality. Also, we shall always use zeta-function regularization of determinants, so that no infinite
counterterms are needed.

The partition of the surface M introduced previously naturally divides the X integration into 2h —2 functional
integrations over pants. This is the two-dimensional analog of the fact that the Feynman path integral in quantum
mechanics may be split into time segments. The full path integral is then obtained by a summation over the inter-
mediate values of the dynamical variables.

If, for some quantum-mechanical system with classical action S (q, q ), we define

K[ ,q]trq2, r2]=Jt
) ) ~qe

then ~e have for t] & t2 & t3,

Thus the main problem is now to compute the determinants in terms of (l;, @,). In the following we shall reduce
det'4 to Gau-ssian integrals over objects involving only Green's functions on pants with zero Dirichlet boundary
conditions. We expect a similar treatment to apply to det'P)P1 with the help of vector ghosts.

To calculate det'5- we return to its path-integral expression,
1 1/2

Zt [ql~rl~q3~13» JI dq2Zt [ql ~ rl~q2~r2]ZI' [q2~r2iq3 ~ r3] (3)

Returning to our integral over the surface M, the analog is to integrate over the values of L on the partitioning
geodesics. However, some care is needed in precisely defining the boundary condition. In the one-dimensional
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case there ls no ambiguity. while ln the two-dimensional case X may perform a rigid twist corresponding to the 4, , s
discussed earlier.

Thus we fix a parametrization y, (e) for the geodesics y; and define, for given l, , l, , lk ) 0 and periodic functions
x, (e),x, (8),x„(e),

—1,[x,g]
Fi/ / [X p/xj pxk] )&i / &3 / & i k&X

Here g is the metric of curvature —l on the pants determined by the lengths l;, l, , lk for p pj pk In analogy with
(3) we have now the following formula for the metric g on M corresponding to the lengths ll, . . . , l3k —3 and
twlats @i, . . . , /3k

—&/2

1 f
det 5 — D xi Dx2 Dx3k 3 F/ / / [xi~xi(@l + )~x2]

"F/, /, /, [X2(42+ ),x3,x4]F/// [x3($3+ ),X4(@4+ ),x5]

/3/ 4/3k 3/3/ 3
[ 3k 4(43/t 4 ) 3k 3 3k 3 (0 3k 3

In the integral D'xi we delete the contribution from the zero mode.
To compute Fi//„[x;, x, ,xk] from (4), we note that X(f) can be uniquely decomposed as X(g) = X(I/') +@((),

where /t/(y/(8)) =0, and X is the harmonic function on pants with X(y/(8)) =x/(8), I =ij,k Since. Ip[Xg] be-
comes then

Ip[kg] = —
&

d (V gg fl /pBk/p+ X —
II) dn XB X,

/=i, j,k

and the functional measure NX reduces to &@,we obtain
/ /

Fili [x/, xj,xk]= „~'//Pte
'

exp ——X () dn'Xr), X =/l/(i;, ij, lk)exp ——X III' dn'XB, X,
—i ty.gl I I ~ /:

I=ij,k &/ /=i jk2 &/
(6)

where /l/(l;, l, , lk) is just the determinant of the Laplacian on pants with zero Dirichlet conditions. We observe
that /l/(l, , l, , lk) can be in principle obtained from the Green's function on pants, G///„((, //. "). As for X, it can be

written explicitly as

X(g) = X )3 x/(8)(8/Bn')G///, (g, ~/(e))de
I =i,j,k

Consequently,

X —() dn'Xr). X= X ()de'(I)de"x, (e')xj(e")Z/// (8', 8"),
i=ijk Ij=ijk

K„,,(e', e-) = X III de(alan )G„,,„(e,e )(a'//an" Bn)G ...(8, 8").
I = l'j, k I

The formulas (7), (6), (5), and (2) together provide
a systematic way of determining the partition function
for any number of loops from a basic ingredient, which
is the Green's function on pants. Such functions can
be constructed out of Poinearc series or studied by
direct analytic methods. It would be valuable to ob-
tain any detailed information on their dependence on
the parameters I;,Ij, lk.

The approach just described for h ~ 2 applies with
only slight changes to the case h = 1, and yields easily
the familiar formulas for one loop. In this case thc
world sheet is a torus, which is partitioned by a single
geodesic y of length l, and twist angle @. The surface
that remains after this partition is just the cylinder,

t

whose conformal structures are represented by flat
metrics g parametrized by the single coordinate I. The
F function for the cylinder now depends only on two
boundary conditions xl(e) and x, (e), and the same
reasoning as used previously leads to the following for-
mulas:

(2m det'b, ),„'„j,= J'I D'x F, [x,x (y+ ) ],
(&)

F/[xl, x2] = it (l)exp( ——,'III) dn'X f).X).

Here ii/ (l) is the determinant of the flat metric on
thc cylinder with zero boundary conditions, and X is
the harmonic function with boundary values X& and X2.
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If we pafametr1ze 'tile cylinder by 0 g ~ 1/land 0» g ~ land use a Fouriet decomposition for x

&
1(2)e2mim $2jl

Itf

we obtain by a straightforward computation

F[x,,x21= P(l)exp — g 2
[cosh(2n m/I') (I c' I'+ Ic„'I ) —(c'c'+ c'c') ] .

„sinh(2vr m/I')

%e note that this expression appeared previously in the study of a propagator for the second-quantized bosonic
string. s Now a gluing after a twist @ means that x2(H) =xl($+ 8), so that c' = c and c2 = c e2"' 4'/t, and thus

2'

Ft[x,x(@+ ) ] = p(l) exp- 4mm
)c j 1 —exp 2nim —+il4

, 1 —exp( —47rm/I') I

The x functional integral is then easily performed, and we find
t 1 4

det'5 = p(i) ' ].I
2

]. 1 —exp 2m/m +il I
4mm /I ~ ~ —2 —1

1 —exp( —4n m/I2)

Next lit(l) can be computed since the eigenvalues of the Laplacian on the cylinder with zero Dirichlet conditions
are just

I vr n +4am/I . 1 —n —~ —ao ~~ m ~~ oo.

A zeta-function regularization and the Watson-Sommerfeld transform yield (see Ref. 5)

p(I) ew/6I2 ]Q (1 e
—4wn/I2) —l

n= 1

and hence

det'4 = —2e j. 1 —exp 2mim +il3j 2

For the torus (det'Pl Pl)' = (det'5)/2, the mapping class group is SL(2,Z), and the Weil-Petersson Kahler form
is 4dlb, d@ (the factor of 4 comes from our normalization of area). The final formula for Zl thus becomes

r l2 t 48
pOO pOO 1 i2

(10)
SL 2Z "o "- 4m 2m

i ,m 1 t ~ i

Changing variables to rl =pi ', r2=1/I, we recognize 2dl dp as the SL(2,Z) invariant measure drl d72/72, and
Zl as given by the well-known formula obtained in Refs. 3 and 5.
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