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The low-energy threshold behavior and Levinson’s theorem are derived for general, not neces-
sarily rotationally symmetric, two-dimensional scattering systems, with zero-energy resonances and
zero-energy bound states explicitly taken into account. Surprisingly, s-wave—type zero-energy reso-
nances do not contribute at all to Levinson’s theorem, while p-wave~type zero-energy resonances
each contribute a term — 1, exactly like (zero-energy) bound states. Some consequences of this
for, e.g., the Witten index in certain supersymmetric quantum-mechanical models are briefly dis-

cussed.
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Two-dimensional scattering systems have become an
important object of current interest. Recently, the
well-known low-energy concepts of scattering length
and effective range have been generalized to n =2
dimensions.! This has given new insights into low-
energy phenomena, e.g., in spin-polarized quantum
systems. In many of these low-energy phenomena the
occurrence of zero-energy resonances Or zero-energy
bound states plays a significant role. For example, re-
cently it has been suggested? that such a state might be
responsible for the fast surface recombination rate for
deuterium atoms below 1 K. We also recall the three-
body Efimov effect,>* where the appearance of such
states in the underlying two-body subsystems causes
an infinite number of three-body bound states.
Another manifestation of this role can be found in the
value of the Witten index’ for supersymmetric
quantum-mechanical models. In particular, in one
dimension it has been shown that a zero-energy state
contributes a term + 5 to this index, giving it a frac-
tional value.® The arguments used in that work are
based upon Levinson’s theorem for one-dimensional
scattering in the presence of zero-energy states.”®

Reference 6 also confirms again the usefulness and
importance of Levinson’s theorem. In this respect, it
has been shown recently that this theorem, extended
to include repulsive Coulomb potentials, provides in-

URo(K)v=(2m) [ = Ink +im/2+ 12+ ¥ (D 1u) (v + M (k),

formation on the nodal structure of the zero-energy
wave function of the problem.’

It is not yet known how this fundamental Levinson’s
theorem extends in the presence of these zero-energy
states in two dimensions. (For three dimensions, cf.
Newton!® and Osborn and Bolle'!!) One of the
reasons for this gap is that the problem is technically
rather difficult because of the logarithmic singularity
of the two-dimensional free Green’s function at zero
energy.

In this Letter we show how to overcome this diffi-
culty. We start from the 7 operator defined by

T(k)=[)\0uR0(k)v+l]"1, (1)

Imk =0, k=0, \real,

where we have factorized the potential V as V(x)
=u(x)v(x) with v(x)=[V(x)I"?, u(x)=v(x)
xsgnV (x), and where X\, is the coupling constant.
The integral kernel of the free Green’s function,
Ry(k), in two dimensions is given by

Ro(k, x,y) =+iH{" (klx—yl), x=y, (2)
with H{" the Hankel function of the first kind. (We
use natural units and put the mass m = -;-,) This ex-

pression has a logarithmic singularity at Kk =0. The
trick is then to define an operator M (k) as follows'?:

Imk =0, k=0, 3)

with ¥ the digamma function. This operator M (k) has a convergent two-variable expansion with respect to 1/Ink
and k?Ink around k =0 if, roughly speaking, the potential is exponentially decreasing at infinity.!> In particular
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the kernel of M (0) = M, the first term in this expansion, reads
My(x,y)=— 27)  'u(x) Inlx—ylv(y), x=y. 4)

A low-energy analysis of T (k) strongly depends, of course, on the possible occurrence of zero-energy states of
the Hamiltonian of the system. To describe these states we introduce the functions ¢ as solutions of!2

MOMQd=—¢, ¢ €L (R?), Q=1-P, P=(vu) 'u)(vl (5)
Indeed, then it can be shown that the zero-energy Schrodinger equation is satisfied for the functions

U(x)=— (v,u) " "ng(v,Myep) — (27)~ 1)\Ofd2y In|x—ylv(y)e(y), (6)
with the additional property u (x)y(x) = — ¢ (x). Furthermore, looking essentially at the large-|x| behavior of the
wave functions ¥ (x), one has

W (x) + (v,u) ™ Ny (0, Mogd) — (27) ™ holxI =2 f @2 (x- y)u(y) @ (y) € L2(R?). (M

This property is important to distinguish between bound-state wave functions [y (x) € L2(R?)] and resonance
wave functions [y(x) ¢ L?2(R?)].
Introducing the notation

et =(vu)” l(v,Moo(i)j), c'=Qm)" lfdzx xv(x)¢;(x), (8)
we then find the following possibilities. I
Case I|.—Equation (5) has no solutions or, tant. Indeed, if the potential V is rotationally sym-
equivalently, there exist no zero-energy states . metric, one can explicitly show that case 1I(a) corre-
Case Il.—Equation (5) has N =<3 solutions ¢;, sponds to an s-wave zero-energy resonance and case
0<, <2, satisfying ¢; € L2(R?), y; ¢ LX(R?), so I1(b) to p-wave zero-energy resonances. Case III cor-
that they are all zero-energy resonances, and (a) responds to zero-energy bound states appearing in the
N=1, ¢{9=0, ¢{2=0, or ¢S”=0; or (b) N=<2, d and higher partial waves. We remark that for
e =0, c¢”#0, 1</ <2, and the ¢} are linearly in- reasons of brevity none of the cases IV will be dis-
dependent; or (¢) 2=<N =<3, ¢{Y =0, ¢{=0, or cussed here (cf. Ref. 13).
csV=0, ¢ =0, ¢i=0, 1<, <2, and the ¢y’ are Then we can prove that in all cases T (k) has a con-
linearly independent. vergent two-variable Laurent expansion with respect to

Case 111.—Equation (5) has N solutions ¢;, N finite, 1/Ink and k2lnk around k =0.!> We only explicitly
3<j <N +3, satisfying ¢, € L’(R?), y; € L*(R?), specify the singular behavior of T(k): case I,
so that cl(f) =c§” =0 and they are all zero-energy

- -1 .
bound states. T(k)=(1+Xx0MypQ) '0+0(1/Ink); 9
Case IV.— Admixtures of cases II and III. case I1(a),
The way in which property (7) is satisfied in case II, © 125 ~1 -
giving rise to the possibilities 1I(a) to II(c), is impor- T (k) =1Ink (2molci® [2) o) (dol; (10)
I case 11(b),
T(k) =~ (Knk) " (mag) ! 2 (- e4) ")) (b1 +0(1); an
Ja=1
case III,
NEB - - N&3 _
T =k"5 1 % (M) 1)) (il — Ink 3 (.M 10) 7 ,) (¢ Mo To0 +0 (1), (12)
=3 Ji=3
with

My (x,y)=(8m) lu(x)|x—yl*v(y),
M (x,y)=—167)" "[Gmr+Ind+V¥(Du(x)|x—yl*v(y) —2u(x)(In|x—y])Ix—yl?v(y)],
To= li_mo(lﬂoQMOOQ +e) (1= Py),

where P, denotes the following projector:

P0=i($j:¢j)“l!¢j><é’jl' d.)j=(SgnV)¢jv (Q.Sj»(bl):aﬂ((;jrd?j)-

ji=1
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We remark that the singular behavior of T (k) in case I1(c) is given by the sum of the singular terms in cases I1(a)
and I1(b). It is also interesting to note that the s-wave type zero-energy resonance causes a (weak) logarithmic

singularity in 7 (k). These results are new.

Next we use these results to discuss the low-energy properties of Tr[R (k) — Ry(k)]. This quantity is a relevant
one to look at for deriving Levinson’s theorem, e.g., since it is connected with the on-shell S matrix S (k) in the

following way!3 14:

2ImTrlR (k) —Ro(k)1=—i(2k) "' Trl(d/dk)InS (k)]. (13)
Employing

TrlR (k) —Ro(k)]1=— N TrlRo(k)vT (k)uRy(k)] (14a)

= —no(2k) "' TrluR§ (k) vl +A3(2k) "' TrluR§ (k) vT (k)uRo(k)v], (14b)

we can show that the function Tr[R (k) — Ry(k )] has again a two-variable Laurent expansion in 1/Ink and k2 Ink
around k =0. Here we only need the coefficient of the term (1/Ink )~ '(k%Ink) ™ '=k 2, viz.,

TrlR (k) —Ro(k)1=—Dk~ 2+ 0 ((k¥Ink)~ 1),
where
D'=0,

Dll(a)=0’ D"(b)=N,

DM = (N —1),

(15)

D= N. (16)

Equations (13)-(16) provide all the necessary information to derive Levinson’s theorem by the standard
method of contour integration in the complex energy plane. The analytic function to start from is

S =TrlR (k) = Ro(k) 1+ Dk~ 2= aok =2 d?x ¥V ().

Here the last term on the right-hand side stems from the high-energy Born behavior of Tr[R (k) — Ry(k)] [cf. Eq.

(14b)]1. The contour integration then yields
Sk =i (2K~ Tel(a/dk ) InS (k) 1) = = 27N,

where N, is the number of negative-energy bound
states, where D is given by Eq. (16), and where we
have assumed that there are no eigenvalues of the
Hamiltonian embedded in the continuum.

If V is rotationally symmetric, Eq. (17) for a fixed
partial wave / leads to

51(00)_5](0)=_17Nb,["7TD1, (18)

where §; is the phase shift, Dy=0, and D;=0 or 1,
[=1."5 On the right-hand side of (18), a Born-term
subtraction is absent because of the better high-energy
behavior of the corresponding fixed partial wave quan-
tities.

These formulas extend Levinson’s theorem in the
presence of zero-energy states to two dimensions. [In
case I, Eq. (17) is consistent with Osborn et al.'® and
Cheney.!’] These results are surprising. Indeed, we
know that in three dimensions there possibly exists
only a zero-energy resonance of the s-wave type and it
contributes a term —w/2 to the corresponding
Levinson’s theorem.!'% ! A similar result holds for the
zero-energy resonance in one dimension.”® Here we
find that in two dimensions a possible s-wave-type
zero-energy resonance does not contribute at all to this
theorem, while there possibly exist also p-wave-type
zero-energy resonances that contribute each a term
— 1, exactly like (zero energy) bound states.

902

—2mD — (A/2) [ d?x V (x), (1n

Of course, this must have some consequences in
certain two-dimensional phenomena. As an example
of current interest, we briefly discuss supersymmetric
quantum-mechanical models, where one studies Ham-
iltonians of the form H = Q? with Q the supersym-
metric charge

0 L

Q=L10

One of the challenging problems in this field is to
detect mechanisms by which this supersymmetry can
be spontaneously broken. For this purpose Witten in-
troduced® an order parameter A, counting the differ-
ence of the number of bosonic and fermionic zero-
energy modes of H. If this Witten index A=0, which
is an indication of the existence of zero-energy states,
then supersymmetry is not broken.

For one-dimensional models it has been found (cf.,
e.g., the references in Ref. 6) that A, appropriately
regularized, may be fractional when the continuous
spectrum in the model extends to zero energy. Recent
calculations, e.g., Ref. 6, have shown through use of
Jost-function techniques that A is given in terms of
the relative phase shift of the associated operators LL'
and L'L. By employing the corresponding Levinson’s
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theorem these authors find that these fractional
values, + % exactly arise from the contribution of a
zero-energy resonance to this theorem. So this indi-
cates that there is a zero-energy state in these models
and hence supersymmetry is unbroken. For three-
dimensional spherically symmetric models it is claimed
that the same conclusion holds.® We remark that an
explicit construction of such spherically symmetric
models in n dimensions is given in the work of Imbo
and Sukhatme.!8

The results on the two-dimensional Levinson’s
theorem we have obtained here at first sight seem to
imply, if one makes a similar reasoning, that the Wit-
ten index is never fractional in these two-dimensional
supersymmetric quantum-mechanical models with ro-
tational symmetry, in contrast with one and three
dimensions. However, a closer investigation, taking
into account the long-range relative interaction poten-
tial between LL" and L'L (of the type c/r?, ¢=0)
shows that fractionalization can occur if the long-
distance behavior in L is trivial.'®
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