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Global, Uniform, Semiclassical Approximation to Wave Equations
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The usual configuration-space semiclassical approximation to wave equations (e.g. , Schrodinger s
equation) needs refinement at caustics. When expressed in a phase-space coherent-state represen-
tation, such equations admit a semiclassical solution that properly captures the effects of caustics.
Transformation of this expression to the configuration-space representation yields a global, uni-
form, semiclassical approximation.

PACS n 0m bers: 03.40,Kf, 03.65.Db

%e consider semiclassical approximations to wave
equations such as the time-dependent, one-dimen-
sional $chrodinger equation
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usual semiclassical approximation, J„=J, where

J„(x",T;x', 0)
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Here

(4)

~ (x",x') = Jt [px —H(p, x) ]dt

evaluated for a classical path that satisfieswhere P denotes the operator that arises from a
Weyl-ordered quantization of the classical Hamiltonian
H =H(p, q). Our remarks readily generalize to (i)
more dimensions, (ii) time-dependent Hamiltonians,
and (iii) similar wave equations as arise, for example,
in the paraxial approximation to the full (hyperbolic)
wave equation for a single frequency (where 4 plays
the role of ti). t

Equation (I) admits a solution in the form

«(t) = BH/Bp(t), p(t) = —BH/Bx(t), (6)

(2)

lim J (x",T;x', 0) = 5(x"—x').
T~0

p(p, q, t) = (~ti) tl4 ' exp( —«2/2P —ipx/tt)qh(x + q, t)dx,

and the inverse transformation

ti) ll4
y(q, t) = JI y(p, q, t)dp,

and which interpolates between x (0) = x' and x ( T)
=x". The sum runs over the several such classical
paths, which are assumed to be well separated from
one another. Equation (4) fails to be a good approxi-
mation when the paths are not well separated, and
especially so at a caustic where paths cross. Maslov
has proposed an alternative, integral representation fory(x", T) = J)J( "x, T;x', 0)@( 'x0)d 'x
the right-hand side of (4) which is locally uniform but
generally not globally so.' Recently, other alternatives

in terms of the initial-value amplitude@(x', 0) and t"e have been proposed by McDonald and Littlejohn. 5

propagator J for which Here, extending earlier work, we present another
semiclassical expression that provides a global, uni-
form approximaiton and which is applicable even when
a veritable "thicket" of classical trajectories exist.

A path-integral representation for J readily leads to the Adopting a convenient choice of phase, we intro-
duce the coherent-state amplitude7

which have been normalized so that

Jf I y(x, t ) I2» = J I y(p, q, t ) I'(dp dq/2~&)

It follows directly that (I) is replaced by

ittBy(p, q, t)/Bt =~(—iii B/Bq, q +inst B/Bp)y(p, q, t),
which admits a solution in the form

4(p".q".T) =
J &(p",q" T;p', q', o)0(p', q', o)(dp'dq'/2~~)
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in terms of the initial-value amplitude and the coherent-state propagator K. The smoothness of every p implies
that they do not span ail of L (9F ) but rather are members of a proper subspace which is a reproducing-kernel
Hilbert space. Consequently it is appropriate to choose

lim K (p",q'", T;p', q', 0) = e p(A
'

{—,
' (p" +p') (q" —q') ——,

' [(p"—p')'+ (q" —q')'] }),
T 0

(12)

which is the reproducing kernel itself. With this choice it follows that {K{
~ 1 uniformly.

Recently a representation of K was given for a wide class of Hamiltonians as the limit of well-defined path in-
tegrals over pinned Brownian p and q paths in the limit that the diffusion constant diverges. In a formal way this
representation may be given as

fO

K(p",q", T;p', q', 0) = li M p{( /t) ' '[pq —h(pq)]dt —(I/2t ) „' [p'+q']dt }IIdp(t)dq(t),

it (p, q ) = exp[ —(A/4) (8~~+ 8~~) ]H (p, q ). (13)

This phase-space path integral may, in turn, be approximately evaluated by stationary-phase methods leading to a
semiclassical solution, K„=K, where

K„(p",q", T;p', q', 0) =AKSO, (p",q", T;p', q', 0), K„(p",q", T;p', q', 0) = exp[iF (p",q";p', q')/t],

A = [P(T)+iq(T)] (14)

Solution of the extremal equations that follow from (13), and an evaluation of the quadratic fluctuations, lead, as
v ~, to the factors which appear in (14). Specifically,

F =
2

(p"q" p'q') +
2

(P"q' —q "P ' —q'P'+P'q') + )I [ 2 (Pq —qP) —H(P, q ) ]dt

where P(t), q(t) [with p'=p(0), q'=q(0), p"=p(T), and q"=q(T)], denotes a generally complex solution of
the analytically continued classical equations of motion,

q = BH/Bp(t), p(t) = —dH/re (t),
subject to the boundary conditions q'+ip' = q'+ip', q" —ip" = q" —ip". To find a solution to these equations set
q'= q'+ w and p' =p'+i+ and choose the free complex parameter w to satisfy the final boundary condition; the
proper solution is continuous for all T «0. The amplitude factor A is determined as the solution of the linearized,
classical Hamiltonian system of equations

p(t) = —p(t)p(t) y(t)q(t), —q(t) =n(t)p(t)+/3(t)q(t),

subject to the initial condition p (0) = 1/2, q (0) = —i/2, where

(t) =a,2H(p-, q), /3(t) =e e H(pq), -&-(t) =a2H(pq), (IS)

evaluated for the extremal trajectory.
In the analysis of (14) it is useful to distinguish two types of paths. In the special case that the classical evolu-

tion of the phase point (p', q') in time T with the classical Hamiltonian H coincides with (p",q"), then w =0, F is
real, and {Ko, { =1. More generally, N a0, F is complex, and importantly in that case it follows that {K,, { & 1,
which for small t leads to an exponential reduction in the amplitude of K„. The subdominant factor A is, in Dirac
notation, alternatively given by

A =(0{~exp[—(i/t) J A, (t)dt]{0), P'2(t) = —,
' [u(t)P'+P(t)(PQ+QP)+y(t)Q'], (19)

where %denotes time ordering, [Q,P ] =ih, and {0) is the normalized oscillator ground state with (q +iP ) {0)= 0.
Stability requires that% q be dissipative, i.e., i (P z

—Wz ) «0, and thus it follows that {A {
~ l. In particular, if

p=0, o. =y, and Ima=0, then A =exp[ —,'i „)u(t)dt]; —even this phase factor can be eliminated from such a
quaciratic Hamlltonlan by normal ordering. '

The required global, uniform, semiclassical approximation follows from K„and is given by

~t "'
Jsc(q ~ T'q ~ 0) =

2 J' Ksc(p .q Tip q ~ 0)dp dp .2' (20)
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It is of interest to see how the expected properties of
J,, arise in such a double integral. Normally the in-
tegrand of (2Q) is exponentially small except at those
several special pairs p'=p, ' and p"=p," that corre-
spond to genuine classical trajectories beginning with
(p', q') and ending at (p",q") in time T with Hamil-
tonian H. Each of these classical trajectories will con-
tribute with a ~eight roughly determined by how fast
Eo decreases in amplitude and changes phase near
(p,',p,"). Such an evaluation automatically gives the
proper contribution for various caustics, or even when
the classical paths are not well separated for a finite in-
terval (a "thicket"). Moreover, if some component of
the Hamiltonian is a normal stochastic variable, then
an ensemble average of powers of the E propagator
and its complex conjugate lead to a multipath path in-
tegral that can be approximated as described here pro-
vided the Markov approximation is adopted for the
correlation function. 'o

Under suitable conditions the integrals in (20) may
themselves be carried out by a stationary-phase ap-
proximation. Near each isolated classical trajectory
we set

F = F (p,"+(p" p,"),q";p—,'+ (p' p,'),q') —(21)

and expand I' out to linear and quadratic terms in
p" —p,

" and p' —p,'. Integration over p" and p' can
then be carried out analytically yielding a suitable ap-
proximation save in the case that the matrix of quad-
ratic deviations is degenerate. In that case at least one
term cubic in the deviations is required leading to the
expected Airy function. In more-dimensional cases
what counts is the behavior of F in the vicinity of the
special phase-space points where F is real. Deviations
therefrom may be catalogued as to type on the basis of
the classification scheme of catastrophe theory. In
each case the dependence on II can be scaled out and
the resultant integral numerically evaluated. Indeed,
for this aspect of the work one may draw on similar
studies in configuration-space approaches. " The fi-
nal behavior is obtained by the assembly of the ap-

propriate contributions for the problem at hand. The
result is, as it must be, qualitatively similar to that of
more conventional approaches. Ho~ever, since the
result will typically differ in detail there is the prospect
for an improved semiclassical approximation.

It is a pleasure to thank M. Berry for his interest and
comments regarding this work. Discussions with
A. Carter, R. Holford, and R. S. Patton have largely
stimulated the author's interest in these problems.
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