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Realizations of Magnetic-Monopole Gauge Fields: Diatoms and Spin Precession
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It is found that the effective Hamiltonian for nuclear rotation in a diatom is equivalent to that of
a charged particle in a background magnetic-monopole field. In certain cases, half-integer orbital

angular momentum or non-Abelian fields occur. Furthermore, the effects of magnetic-monopole-
like gauge fields can be experimentally observed in spin-resonance experiments ~ith variable mag-

netic fields.

PACS numbers: 03.65.Ge, 11.15.Kc, 14.80.Hv, 33.10.Ev

Gauge potentials have been found to appear very
naturally in the description of quantum-mechanical
systems which depend upon slowly varying external
parameters. Berry' performed a detailed study of
Abelian potentials which appear when a single nonde-
generate level is subjected to adiabatically varying
external parameters. He showed that Abelian
magnetic-monopole fields can occur near a degeneracy
of the quantum levels (the monopole) in the space of
external parameters. He also proposed an interference
experiment using split electron beams to search for an
"excess" geometrical phase induced by his gauge po-
tentials. Simon2 recast Berry's findings in the language
of holonomy theory and made a connection to thc
quantum Hall effect. Finally, Wilczek and Zee3
showed that non-Abelian gauge potentials can arise
when sets of degenerate levels are subjected to adia-
batically varying external parameters.

In work preceding Berry's by over twenty years,
Herzberg and Longuet-Higgins noticed sign ambigui-
ties in the Born-Oppenheimer' wave functions of sim-

pie molecules. These sign ambiguities are associated
with conical intersections in the zeroth-order electron-
ic energy levels. To compensate for these and other,
more general, phase ambiguities and thus to make the
Born-Oppenheimer wave functions single valued,
Mead6 suggested adding a "vector-potential-type
term" to the nuclear Hamiltonian. He refers to the ef-
fects of this term on the nuclear motion as the molec-
ular Bohm-Aharonov effect.

The gauge potentials of Berry, Simon, and Wilczek
and Zee can be generalized to systems where the slow-
ly varying parameters are no longer external, but are
themselves quantized; in the case of molecular phy-
sics, these are the nuclear coordinates. Such a descrip-
tion subsumes the findings of Herzberg and Longuet-
Higgins and Mead. In a paper to be published else-
where, ' we show that the Born-Oppenheimer descrip-
tion of molecules can be cast in a rigorously gauge-
covariant form, and discuss higher-order corrections to
this description.

Diatoms as monopoles. —In the Born-Oppenheimer
method, s' eigenfunctions of the full Hamiltonian

H(R, r ) = — Vt22t — Vr + Vtv(R ) + V, (R,r)
2M' 201e

are decomposed into electric and nuclear components:

q'(R, r) = X C'(R)g (R,r).
Here R and r are nuclear and electronic coordinates, respectively. The P (R, r ) form a basis of electronic eigen-
functions of H for fixed R when the nuclear kinetic energy term is ignored; the energy of the state @ (R,r) is
denoted by e (R). The vector wave functions 4' are then acted on by the matrix-valued nuclear Hamiltonian
H „which results when His sandwiched between electronic eigenstates ~ n (R ) ) = ~@„):

Hmn X[&it + ( m (R ) ( &tt I l (R ) & ] [&it + (l (R ) I &tt In (R ) ) ] + Vtt (R ) & „+ (eR )5 „.
2Pl+

Here, 0 „ is exact and has been written in gauge-
covariant form. The e„(R ) act as effective potentials
for the nuclear motion, while the ( m ( V it ~

n ) act as
effective gauge potentials and transition terms between
different electronic states. In the adiabatic limit,
~here the nuclei move very slowly relative to the elec-
trons, we may assume that the electrons remain in the
nth level [i.e., we ignore off-diagonal transition terms

[V„tA(R )]'+ V'(R —),
2%i~

(3)

where A(R ) = (n ~i Vtt ~n (R )). As noted by Mead
and Berry' and discussed in detail in Ref. 7, A

I

in (2)], in which case the relevant Hamiltonian is ap-
proximately
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transforms as a U(1) gauge potential when we locally
change our choice of phases for l n (A )) . If l n ) be-
longs to an X-fold degenerate level, A is an N x A' ma-
trix which transforms as a U(X) gauge potential.
The approximation leading to (3) differs from the usu-
al Born-Oppenheimer approximation where ln (8 )) is
chosen real so that A(R) =0. As we shall see, this
choice of gauge is not always possible globally.

For example, we consider the doubly degenerate A

levels of a diatomic molecule. The effective Hamil-

tonian for this system is, in general, a 2X2 non-
Abelian matrix determined as follows. Given the elec-
tronic eigenstates with A = + l for the nuclear axis in
the 8 = $ = 0 direction, we can choose a family of
eigenstates adapted to nuclei pointing toward 8, @ by
simple rotations:

I
+ (8, e)) = e' "e' "e "

I
+ (0, 0)). (4)

According to our general prescription one then finds
effective U(2) gauge potentials which are 2&&2 ma-
trices (with + indices implicit):

A, = (e, pit BlBele, e& = (0, 0l e—""J,e ""10,0) = (0, 01[ c—os@J, +sing J, ]lo, o&,

Ap= (8, @lt B/Byle, @) = (0, 0l [(1—cose) J3+ sine sing Jt + sine J2]10, 0&

If /e —, we find A e
= 0. A

&
is also readily evaluated in this case; one finds an "Abelianized" diagonal structure

A&++ =l(1 —cose), A& = —l(1 —cose), A& =A& + =0. (7)

More compactly, we may write A& = l(1 —cose)o.3. Evaluating the field strength one finds Ftt& = BzA&
—B&Ae= isinea3, or for the corresponding Cartesian tensor [Ftt~= (g )'—(g~~)' ] on the sphere simply

Fttg = Io3. (8)

Evidently, the nuclear coordinates act as if they parametrize the motion of a charged particle in a magnetic-
monopole field.

To analyze this further, we need the angular momentum operators appropriate to the problem. 9 They are

J„=i sin@ + cote cosg
8

1-cosH—I . Cos@ a3,
sinH

(9)

J =i ' —cos@ +cotesin@
Be B@

1 —cose
I . sing o3,

sinH
J =i2

where 0= '7 —i A. Note that half-integer angular
momentum is associated with the Orbita/ nuclear
motion, for / half integer. 'o

We may now write the Hamiltonian (1) as

H = -,' (J' i'), -
and construct its eigenstates by the usual procedure. '

The truly non-3 belian case l = —,
' .—Although the

algebra starting from Eq. (7) does not especially distin-
guish the case I = —,', the original physical problem is
different for this case. Specifically, in evaluating the
potentials (5) and (6) we find off-diagonal terms:

0
8 2 e

—i$
—Ke'&

1

I
1 —cosH —i Ke'~ sine

i Ke '~ sinH —1+cosH
(12)

where in each case the bracketed term is the standard
or naive rotation operator. J may be rewritten in the
more compact for1Yl

(10)

wh««=2(+ IJ)l —). Since the states in question
are not eigenfunctions of angular momentum (but
only of J3), K can in principle take any value; we have
taken it real without loss of generality. From (11) and
(12) we compute the field strength

Ftt~= BeA~ —B~Ae —i [A~,A~]

= —,
' (1 —K')sine o3. (13)

The field strength (13) vanishes for K = 1. This
might have been anticipated, for the following reason:
If the degenerate electron states with A = + —,

'
actually

formed a representation of the rotation group we
would have K = 1. Furthermore, we could choose a
fixed basis for the electron states, independent of the
nuclear-axis orientation, since the two-dimensional
space of states is rotationally invariant.

The field strength (13) superficially resembles the
monopole field (8) that we encountered before, but
the interpretation here is quite different. For one
thing, K is not quantized. At a deeper level, in the
present case the gauge fields are truly non Abeiian (for-
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~& + 1). While previously the potentials (7) all point-
ed in the same direction in internal space, here they do
not. It is important to check that they cannot be made
to do so by a different choice of basis, i.e. , in a dif-
ferent gauge. Actually this already follows from the
fact that the field strength is not quantized; it can also
be seen by noting that the covariant derivative of the
field strength, D~Fz&, has a contribution from the
commutator, which implies that it does nor point in the
same direction as Fz& in internal space.

Because of the nonvanishing of D&F«, the opera-
tors of Eq. (10) do not satisfy the angular momentum
commutation relations. However, the "Abelianized"
operators appropriate to the K=O case, i.e., Eq. (9)
with /= —,', commute with the Hamiltonian not only
for K = 0 but generally. We do not know of a canonical
procedure which yields these angular momentum
operators, but we are convinced of their uniqueness
(for Ke +1). There is no nontrivial ~ dependence
which may be added to the operators of Eq. (10) that
preserves their algebra. "

The implications of the equation implying conserva-
tion of J,

can be made more transparent by defining the block-
diagonal operators

the two spin components implies an extra rotation of
the spin by an angle 0 in the x-y plane. In 8 space,
this mimics the effect of a magnetic monopole at 8 = 0
with unit Dirac charge on electrically charged particles
following the trajectory B(r). Berry proposed an ex-
periment to observe this geometric phase by splitting
an electron beam in a magnetic field, rotating the field
applied to one of the components of the beam, and
looking for interference when the split beam is recom-
bined. Unfortunately, such an experiment is impracti-
cal, because of the difficulty in guaranteeing identical
dynamical evolution of the two beam components.

We wish to point out that Berry's result may be ex-
tended to the case of spins in a rapidly oscillating mag-
netic field, thus providing a practical way to measure
geometric phases within the familiar context of mag-
netic resonance. Specifically, let 8, be a large constant
orienting field and 8~ (t )sin(out ) a small, slowly
modulated oscillating field with mean rf frequency cu

in the x-y plane. Then regarding 8~ and cu as free
parameters and varying 8~ around a closed 1oop will

result in a geometric phase which can be observed by
beating the resulting rf signal against a reference sig-
nal. Thus, an interference experiment is done upon a

single sample, avoiding the problem of guaranteeing
precisely equivalent dynamical evolution for two
separate systems.

Consider the Hamiltonian
M, 0

J=ow, K
2

H„—Ho= K C, 2
' (15) &~,b= —ya' [B,i+B~(t)sin&or].

Here M, and N, each satisfy the angular momentum
algebra, and (14) gives the intertwining relations

M, C = CN, , C"M; = Ã, C".

A direct computation gives
1

=J +—2

(16)

(17)

Thus C is a sort of a Dirac operator, roughly a local
square root of the covariant spherical Laplacian. Its ef-
fect is to split the eigenvalues of H by 2~(j+ z ), in

agreement with the classic result. '

Spin precession in an oscillating magnetic field. —In the
preceding section, we saw how magnetic-monopole
fields can arise dynamically in the context of the
Born-Oppenheimer method. Berry studied the case of
spins in an applied, adiabatically varying magnetic field
and found another monopole, leading to a nondynami-
cal precession effect. He sho~ed that if the external
magnetic field goes around a closed path 8(t)
(0~ t ~ T) enclosing a solid angle f1, then spin- —,

wave functions with s, = + —, acquire geometrical
phases exp(+i 0/2) in addition to the dynamical

T
phase exp[ —if F. (t)dr]. The relative phase between

0

We suppose operation near a resonant frequency cu

=cuo=yB„and go to the rotating frame. The ap-
propriate effective Hamiltonian is

H = —
year 8 I — i+B~(r) . (19)

QJO cdo = y(C, ~0) —y(C ~o)
T
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This is precisely the sort of Hamiltonian considered by
Berry, with the origin ( and the monopole) now locat-
ed at the resonance point ~ = ~0, 8~ = 0. Thus a vari-
ation of 8~ around a loop C(8~(t)) leads to a
geometric phase y (C, duo).

The resulting geometric phase occurs together with
the much larger rotation, proportional to the time, due
to ordinary precession. It can be isolated by beating
the precession signal against a fixed-frequency signal.
Notice that this phase depends on coo, so that the ap-
parent splitting of nearby resonance peaks mo and ~0
will be altered by an amount
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