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Drastic Increases of Frequency and Damping of a Superconducting Vibrating Reed
in a Longitudinal Magnetic Field
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Drastic increases of resonance frequency (factor of 7) and damping (factor of )500) of a super-
conducting reed are observed when a longitudinal magnetic field is applied. The frequency change
is much larger than expected from the pole effect (10' times) or from the flux-line-tilt modulus (20
times). We give a quantitative explanation with no adjustable parameter. Unpinning of flux lines
leads to frequency corrections and to damping. This allows novel precision measurements of ex-
tremely weak pinning in amorphous alloys. First experiments demonstrate the feasibility of this
method.

PAt"S numbers: 74.60.6e, 61.40.+b, 62.40.+ i

Pinning of flux lines (FLs) in type-II superconduc-
tors has remained a subject of active research in the
last two decades. In spite of its fundamental and prac-
tical importance both in strong-pinning imperfect crys-
tals' and in extremely weak-pinning amorphous al-

loys, the quantitative interpretation of experiments in
terms of elementary pinning forces'4 and their statisti-
cal summation'5 still poses problems. It is, therefore,
desirable to conceive of novel experiments supple-
menting the standard measurements of current-voltage
and magnetization curves' 3 and the damping of a tor-
sional pendulum studied some time ago.

In this Letter we suggest a highly sensitive precision
method to measure the elastic interaction of the FLs
with the pins, the FL viscosity, and hysteretic losses of
drifting FLs by the frequency and damping of a can-
tilevered reed performing flexural vibration. A drastic
increase of resonance frequency to (Fig. 1) and damp-
ing (Fig. 2) of a vibrating reed (I x w xd=10x1.4
X0.06 mm ) of amorphous Pd3QZr7o was discovered
accidentally when we measured changes of sound velo-
city and damping caused by two-level systems 8 and
applied a longitudinal magnetic field in order to
suppress superconductivity. These increases vanished
abruptly at the upper critical field of our specimen,
8,2=2.16 T at T=1.3 K. First "obvious" explana-
tions failed: Berry's magnetomechanical pole effect9
vanishes in our case since the magnetization is practi-
cally zero. '0 Stiffening of the reed by the FL-tilt
modulus' c44=8,'/p, o yields an enhancement of to'

which is too small by a factor of 0.05 (=4d/mw, see
below). Finally, the observed superconducting damp-
ing, 1 „,obtained by subtracting from the total damp-
ing I the small damping I"0 measured in the normal
state (I o/I = 0.05 at 8, = 1 T), becomes larger than
the upper limit I,„which results for large 8, when
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FIG. 1. Resonance frequency vs applied field. Curve A,
the measured values (+); ru(8, = 0) = 2m x 362.4 s
Curve 8, first-principles theoretical curve for rigidly pinned
flux lines (i.e., for an ideally diamagnetic reed), co —Y(X),
Y = 21.238, [T]'. Though the difference 8 —A is small, the
accuracy of theory and accidental experiment is sufficient to
determine from it, by use of (11) and cu„,, a Labusch param-
eter a (curve C) which is reasonable both in its 8, depen-
dence and in absolute value. The continuous lines A and C
are only guides to the eye. The inset shows the vibrating
reed.

Oc 1985 The American Physical Society



VOLUME 56, NUMSER 1 PHYSICAL REVIEW LETTERS 6 JANUARY 1986

20-

0.2

0) a a a i 1 a s a i 1

0 0.5 1.0

RE DUCED MAGNETIC FIELD b

F16. 2. The measured damping due to superconducting
effects 1 „vs the reduced magnetic field b = B,/B, q,

8,2
= 3.16 T. The curve guiding the eye represents the func-

tion 7.Sb/(1 —b)~. A quantitative interpretation of this

damping by the explicit version of (10) in Ref. 11 is given in

Ref. 7.

the FLs are straight (stretched by 8, ) and move
viscously relative to the curved vibrating matrix.
These apparent paradoxes are solved by the inclusion
of surface currents, stray field, and irreversible FL
jumps. For ideal pinning our theory contains no ad-

justable parameter, and small deviations from this
ideal case are explained successfully by unpinning
(Fig. 1). Here we give the basic ideas and main
results.

The essential physics of our problem is as follows:

(a) Statically, the amorphous reed with very weak pin-

ning and a large Ginsburg-Landau parameter KoL 60
behaves like a nonmagnetic material: Immediately
above 8, &

the internal field 8; equals 8, and the mag-
netization is zero [more precisely, 8, —8; = (B,z

8)/2K o)L. Demagnetizing effects are thus com-
pletely negligible and the FLs are parallel to the ap-

plied fiel 8, II z (b) Dy.namicaily, for our small ampli-

tude, the reed behaves like a perfect diamagnet, with

shielding currents I, flowing on both surfaces within

the effective London penetration depth' A. I
—0.5

p, m. These surface currents exert a magnetic restoring
force which enhances the vibration frequency, and

they drive the FLs, thus contributing to the damping.
This is the decisive effect we calculate in the following.

Let the reed occupy the space [x (
~ d/2, [y (

~ w/2,
and 0 ~ z ~ I, with I && ~ && d, and oscillate along x
with an amplitude u(z) « d. At the clamped end
u(0) = u'(0) =0. The FLs are displaced from their
equilibrium position by an amplitude u(x, y, z )

= u(z) + s(xy, z) along x, with s(xy, z)
= St(x)S2(y)s(z). For d « ~ the x dependence
can be separated exactly, St(x) = dcosh(x/X)/
2A. sinh(d/2A. ), where A. = (Bz/pon)'/z is Campbell's
penetration depth for compressional waves in the FL
lattice' and n is Labusch's parameters (the elastic cou-
pling of the FLs to the pins). Since our experiment
yields A. ) d we will put St(x) —= 1 throughout this
Letter. The y and z dependences can be separated
within a local approximation to a stray-field problem;
this is exact in the limit s « u, i.e., if the pinning is
not extremely weak, for X2 « I2d/w, Ref. 11. Then,
though the reed is curved, we may calculate I, for
i )) w from the two-dimensional theory of potentials
(the problem of laminar flow around a thin plate): I
—u" (z)( —,

' w2 —y2)'/2, I„—u'(z)y/( —,
' w2 —y')'

The component 1~~ compresses the FL lattice; thus
S,—I„,or S2(y) =(8/mu)( —,

' w2»)l/2 We chose
the averages (St)„=(S2)~=1 such that s(z) is the
mean FL displacement relative to the reed axis.

Equations of motion for u (z, r ) and s (z, r ), together
with the natural boundary conditions, we derive by
minimizing the time average of the Lagrangean
L = T —U (kinetic minus potential energy) with
respect to u and s (Hamilton's principle). After some
calculation we obtain

L = (plwd/2) (u —Au" —Bs —C (u'+ a.s') ~),

(1)
where z, u, and s are expressed in units of I; (. . .)
denotes averaging over z, the dot d/Br, and the prime
e/az. The constants (of dimension s ') are,

A = Fd /12pl, 8 = a /pa,

C = ~8,2~/4p. op/'d,

where p is the density and E the Young's modulus of
the reed, and a. =(S2)~=32/3m'=1. 08. The terms
in (1) are the kinetic and bending energy of the reed,
the elastic pinning energy combined with the cornpres-
sional energy, and the field energy (a line tension).
This term originates from the surface current ( —u')
induced in a (diamagnetically behaving) reed with rig-
idly pinned FLs when tilted against the applied field,
and from the stray field ( —s') around a reed with
FLs not parallel to its axis. One can prove' that FLs
tilted against a planar surface cause a stray field even if
they do not cut this surface. A similar term, but with a
smaller prefactor C'=8, /p, Dpi, results if (by error)
only the FL tilt energy is considered, and also from the
pole erect. ' "

From (2) variational calculus gives us

u + Au"" —c (u" + a.s")= 0,
Bs —C(u" + a-s") =0.
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and u =u'=s'=0 at z =0, u" = u"'=u'+a-s' at z = l.
The viscous-force density —qs(x, y, z, r) exerted on a
moving FL lattice (q= FL viscosity) and other damp-
ing mechanisms are treated as weak perturbations,
thus

u (z, r) s (z, r) = cos(cur )exp( —I, )
u (z) s (z)

with I && ~. %e write I = I 0+ I „, I „=I „+I I„
~here I „is the viscous damping and I I, a possible hys-
teretic (amplitude-dependent) damping caused by

jumping FLs (elastic instabilities) and vanishing at suf-

ficiently low reed amplitudes. %e obtain I" as the dis-

sipation rate divided by twice the total energy, e.g. ,

Though a general solution of the system (3) and (4)
is possible, we will use a more transparent perturbation
method. We first solve (3) with s(z) =0 (limit of rigid

pin«'ng) and appropriate boundary condition Cu'(I)
=Au"'(I) derived from (1). Writing X=C/2A and

Y = cu'/A we obtain the solution

u (z) = cosh(«z) —cos(kz) —c sinh(«z) + (c«/k)sin(kz),

c = («cosh«+k cosk )/(K sinh«+ k«sinhk ), «, k = (X + Y)' + X,

where Y(X) is obtained from the transcendental equation

(2X2+ Y)cosh«cosk + X«k sinh«sink + Y = 0.

X = const8, z is the only variable of our theory. The reduced frequency square Y(X) and the functions

F(X)= (u")/(u2), G(X) = u'(I)'/(u')

(6)

(7)

required below were obtained numerically. For X=0, 0.5, I, 2, 5, 10, 20, 50, 100, 200, and 500 one has
Y = 12.3624, 16.894, 21.220, 29.385, 51.373, 83.921, 143.44, 310.13, 577.32, 1099.6, and 2637.3; F= 12.3624,
12.471, 12.749, 13.604, 16.865, 21.662, 28.086, 38.554, 49.036, 63.460, and 91.984; G = 7.5791, 6.650, 5.880,
4.695, 2.714, 1.424, 0.6382, 0.2034, 0.08786, 0.03942, and 0.01432. In zero field (X =0) we get the vibrating-
reed solution': «=k =1.8751 (the lowest solution of cos«= —I/cosh«), c =coth«+cot«=0. 7341, u(z)
= up(z ), u ( I ) = 2, (uz) = I, and Y(0) = «~. Limiting expressions are, at low fields (X ~ 1),

Y = 12 3624+ 9 292X, F = 12 3624+ Xz/2, G = 7 5791 —2 046X;

and at high fields (with EC = n'/ )4,

Y=K[(2X)'i +I] +%2 (X «0 7) F =K[K+3+(2X)' '] G = (K'/X) [1+5/(2X)' '],
k =m/2+m(8X) 'i', «=(2X)'i'+(n'/8)(2X) 'i', c =1—(2k/«)exp( —«) (X & 5).

The reed shape is u = 3z2 —z3 for X & 1, and
u = («/k)sin(mz/2) for X » I, with a strong curva
iure u" = «exp( —«z ) near z = 0 forced by the condi-
tton u'(0) =0.

Next we determine the perturbation s(z) (effect of
unpinning) from (4) with u(z), Eq. (6), inserted The.
solution s(z) is composed of the particular solution
Cu"/8 and the homogeneous solution, the latter giv-

ing a contribution u'(1)~ to (s') which originates
from the boundary condition s'(I) = —u'(I)/o.
similar contribution u'(I), with larger prefactor, is
due to an edge effect:

The longitudinal component of the surface current
flows up one half of the reed and comes down the oth-
er half. Near the free end of the reed it performs a U
turn; this generates there a transverse surface current
of total size (8,/po)u'(I) w/2 which causes additional
FL displacements. No such effect occurs at the
clamped end since there u'(0) = 0. At present we can
only estimate the prefactor of this contribution, p = 3.
Its precise value follows from three-dimensional po-

I „=(A [s(z)])/2mcup(u (z)'), (10)

where A (s) is the area of a 2s-wide hysteresis loop in
the irreversible force displacement curve F (s ) of a FL
lattice shifted across the pins. ' For small shifts s one
expects 3 (s) —~s~3, and thus I"„ increases linearly
with the reed amplitude u(l) and the resonance curve
is no longer Lorentzian. For explicit expressions see

i
tential theory. As 8, increases, this edge term be-
comes negligible since u'(I ) decreases. We finally get
the viscous (linear) damping

r

A F(X) pl G( )
2p I 1+r

where A' = h. 'n w/4d = i2C o./8 is an effective penetra-
tion depth for FL tilt waves stiffened by the stray field,
and r = a C/(A8 ) 'i . The hysteretic (nonlinear)
damping caused by irreversible FL jumps we obtain
from the general expression
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Ref. 11.
For the frequency reduction caused by the total

damping I = I 0+ I"„+I z and by unpinning we get
co =A Y(X) —I —

top, „with

'„„=[8(s') +C '(s') ]/(u')

=Ca. — F (X) Itl+ —G(X) .
1+ 2r

Since to2,.„—A'= I2C/8 —~ ' is small for strong
pinning, nonlocal corrections to the rigid pinning fre-
quency may become important; the main corrections
are" the replacement of AY by AY —co„'t, where

to„t «PCF(X) (P= w /2m I; to„t =to w /Sl for
2Xp » 1) and of F(X) in (ll) by F(x/(I+4pX)).
The exact nonlocal treatment of the stray field is under
way.

%e now compare this theory with our accidental
measurements. In Fig. 1 we note excellent overall
agreement with the rigid-pinning result. From

p =I.gx10 kg tn, d =63 p, m, too ——2~x 362.40 s
and A =catt/12. 3642 we obtain X=21.238, [T] . In-
terpreting the small deviation A Y —ao~2i —cu, „p as eopip

we get from Eq. (11) a pinning strength a which quali-
tatively agrees with that obtained for other materials

by other methods. For 8, 0, n vanishes and has a
maximum n,, „=1.9 x 10' N m " at b = 8,/8, 2= 0.4. No precise frequency is available above
8, =2.48 T, where many materials exhibit a peak in
o. (8,), since for our reed geometry and amplitude the
damping was too high (Fig. 2).

This good agreement demonstrates the possibility to
obtain u(B„T) (which is usually determined by ac
methods') from the resonance frequency of a reed, in
particular for weak-pinning materials. Additional in-
formation on the dynamics of the FL lattice is gained
from the reed's damping at various driving amplitudes.
Inserting in (9) the FL viscosity" q = a „B„b
(a„=3.1x10 0 ' m ' is the normal conductivity of
the reed) we get q/2p=200b s ' and 0.013 s
~ I „~0.13 s ' for 0.12 T» 8, ~ 2.24 T. This is
smaller than our measured value 0.3 s '«I „~44.4
s . Thus in our experiment, hysteretic damping
dominates and we cannot determine o. and q separate-
ly from (9) and (11). At smaller reed amplitude [our
u (i) was about 30 A at 8, = 2 T] the transition from
viscous to hysteretic damping should be observable,
possibly even in one (non-Lorentzian) resonance

curve.
Therefore, by measurement at various reed ampli-

tudes the proposed method in principle offers the
determination not only of the elastic pinning force n
and the FL viscosity q but even the tracing of the en-
tire force-displacement curve F(s) of the FL lattice,
including its initial slope 0. and its saturation value

j,B, (the maximum volume-pinning force) or critical
current density j, .
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